Nội dung text Trigonometriy Engineering Practice Sheet Solution.pdf
g ̈vwUa· I wbY©vqK Engineering Question Bank Solution 1 07 mshy3 †Kv‡Yi w·KvYwgwZK AbycvZ Trigonometric Ratios of Associated Angles WRITTEN weMZ mv‡j BUET-G Avmv cÖkœvejx 1. hw` xcos + ysin = z = xsec + ycosec nq Ges x y z 0 nq, Zvn‡j sin2 †K x, y Ges z Gi gva ̈‡g cÖKvk Ki| [BUET 23-24] mgvavb: xcos + ysin = z .................. (i) xsec + ycosec = z x cos + y sin = z ..................... (ii) (i) (ii) K‡i cvB, x 2 + xytan + xycot + y2 = z 2 tan + cot = z 2 – x 2 – y 2 xy sin cos + cos sin = z 2 – x 2 – y 2 xy sin2 + cos2 2sincos = z 2 – x 2 – y 2 2xy 1 2 Øviv ̧Y K‡i 1 sin2 = z 2 – x 2 – y 2 2xy sin2 = 2xy z 2 – x 2 – y 2 (Ans.) 2. hw` x 2 – 9x + 8 = 0, mgxKiYwU exp{(sin2 x + sin4 x + sin6 x + .... )ln2 Øviv wm× nq, Zvn‡j cosx sinx + cosx Gi gvb wbY©q Ki, †hLv‡b 0 < x < 2 [BUET 22-23] mgvavb: x 2 – 9x + 8 = 0 (x – 1)(x – 8) = 0 x = 1, 8 GLb, exp(sin2 x + sin4 x + sin6 x + .... )ln2 = (eln2) sin2x + sin4x + sin6x + ...... = 2 sin2 x 1 – sin2 x = 2tan2x kZ©g‡Z, 2 tan2x = 1, 8 ⸪ elnx = x Amxg avivi †hvMdj, a 1 – r = sin2 x 1 – sin2 x GLb, 2 tan2x = 1 = 20 tan2 x = 0 x = 0 hv AMÖnY‡hvM ̈ 0 < x < 2 Avevi, 2 tan2x = 8 2 tan2x = 23 tan2 x = 3 tanx = 3 tanx = 3 0 < x < 2 x = 3 cosx sinx + cosx = cos 3 cos 3 + sin 3 = – 1 + 3 2 (Ans.) 3. cosx + cosy = a Ges sinx + siny = b n‡j, cos(x + y) Gi gvb KZ? [BUET 19-20; MIST 19-20] mgvavb: cosx + cosy = a 2cos x + y 2 cos x – y 2 = a ........ (i) sinx + siny = b 2sin x + y 2 cos x – y 2 = b ........ (ii) (i)2 (ii)2 K‡i, cos2 x + y 2 sin2 x + y 2 = a 2 b 2 cos2 x + y 2 – sin2 x + y 2 cos2 x + y 2 + sin2 x + y 2 = a 2 – b 2 a 2 + b2 [we‡qvRb-†hvRb K‡i] cos(x + y) = a 2 – b 2 a 2 + b2 (Ans.) 4. tan + tan 3 + + tan 2 3 + †K tan3 Gi gva ̈‡g cÖKvk Ki| [BUET 16-17] mgvavb: tan + tan 3 + + tan 2 3 + = tan + tan 3 + tan 1 – tan 3 tan + tan 2 3 + tan 1 – tan 2 3 tan
2 Higher Math 1st Paper Chapter-7 = tan + 3 + tan 1 – 3 tan + – 3 + tan 1 + 3 tan = tan + 3 + 3tan + tan + 3 tan2 – 3 + 3tan + tan – 3 tan2 (1 – 3 tan)(1 + 3 tan) = tan + 8 tan 1 – 3tan2 = tan – 3tan3 + 8tan 1 – 3tan2 = 3(3tan – tan3 ) 1 – 3tan2 = 3tan3 (Ans.) 5. hw` sinx + siny = a Ges cosx + cosy = b nq Z‡e †`LvI †h, sin1 2 (x – y) = 1 2 4 – a 2 – b 2 . [BUET 16-17] mgvavb: sinx + siny = a ........ (i) cosx + cosy = b ...... (ii) mgxKiY (i)2 + (ii)2 K‡i cvB, 1 + 1 + 2sinxsiny + 2cosxcosy = a2 + b2 2 + 2(cosxcosy + sinxsiny) = a2 + b2 2 + 2cos(x – y) = a2 + b2 2 + 2 1 – 2sin2 1 2 (x – y) = a2 + b2 4 – 4sin2 1 2 (x – y) = a2 + b2 sin2 1 2 (x – y) = 4 – a 2 – b 2 4 sin1 2 (x – y) = 1 2 4 – a 2 – b 2 (Showed) 6. cÖgvY Ki †h, 16cos2 15 cos 4 15 cos 8 15 cos 14 15 = 1 [BUET 15-16, 00-01] mgvavb: awi, 2 15 = L.H.S = 16 cos cos2 cos4 cos7 = 8 sin (2sin cos)cos2 cos4 cos7 = 4 sin (2sin2 cos2)cos4 cos7 = 2 sin (2sin4 cos4)cos7 = 1 sin (2sin8 cos7) = 1 sin (sin15 + sin) = 1 sin (sin2 + sin) = 1 = R.H.S (Proved) 7. hw` tan 2 = 1 – p 1 + p tan 2 nq Zvn‡j †`LvI †h, cos = cos – p 1 – pcos [BUET 14-15] mgvavb: tan 2 = 1 – p 1 + p tan 2 1 tan 2 = 1 – p ( 1 + p) tan 2 1 – tan2 2 1 + tan2 2 = (1 – p) – (1 + p) tan2 2 (1 – p) + (1 + p) tan2 2 [eM© K‡i we‡qvRb-†hvRb] GLb, cos 2 2 = 1 – tan2 2 – p 1 + tan2 2 1 + tan2 2 + p tan2 2 – 1 = 1 – tan2 2 1 + tan2 2 – p 1 + tan2 2 1 + tan2 2 1 + tan2 2 1 + tan2 2 – p 1 – tan2 2 1 + tan2 2 cos = cos – p 1 – pcos (Showed) 8. hw` = 36 nq, Z‡e sin2 3 + sin2 4 + sin2 5 + ........ + sin2 15 Gi gvb wbY©q Ki| [BUET 13-14] mgvavb: sin2 3 + sin2 4 + sin2 5 + ........ + sin2 15 = sin2 15 + sin2 20 + sin2 25 + ...... + sin2 75 = (sin2 15 + cos2 15) + (sin2 20 + cos2 20) + (sin2 25 + cos2 25) + (sin2 30 + cos2 30) + (sin2 35 + cos2 35) + (sin2 40 + cos2 40) + sin2 45 = 6 + 1 2 = 13 2 (Ans.)
mshy3 †Kv‡Yi w·KvYwgwZK AbycvZ Engineering Practice Sheet Solution 3 9. hw` = 20 nq, Z‡e cotcot3cot5 ........ cot19 Gi gvb wbY©q Ki| [BUET 11-12] mgvavb: cot cot3 cot5 cot7 cot9 cot11 cot13 cot15 cot17 cot19 = cot cot3 1 cot7 cot9 cot 2 + cot 2 + 3 (– 1) cot 2 + 7 cot 2 + 9 ∵ = 20 = – cot (– tan) cot3 (– tan3) cot7 (– tan 7) cot9 (– tan9) = – (cot tan) (cot 3 tan3) (cot7 tan7) (cot9 tan9) = – 1 (Ans.) 10. hw` A + B + C = nq Z‡e cÖgvY Ki †h, sin2A + sin2B + sin2C = 4sinA sinBsinC. [BUET 09-10] mgvavb: L.H.S = sin2A + sin2B + sin2C = 2sin(A + B) cos(A – B) + sin2C = 2sin( – C) cos(A – B) + sin2C = 2sinC cos(A – B) + 2sinC cosC = 2sinC [cos(A – B) – cos(A + B)] = 2sinC 2sinA sinB = 4sinA sinB sinC = R.H.S (Proved) 11. ABC GKwU ̄’~j‡KvYx wÎfzR| cÖgvY Ki †h, cotAcotB + cotBcotC + cotCcotA = 1 [BUET 05-06] mgvavb: †h‡Kv‡bv wÎfzR ABC Gi Rb ̈, A + B + C = A + B = – C cot(A + B) = cot( – c) cotAcotB – 1 cotB + cotA = – cotC cotAcotB + cotBcotC + cotCcotA = 1 (Proved) 12. cÖgvY Ki †h, †ÿÎdjwewkó ABC wÎfz‡Ri Rb ̈ 1 a sinA + 1 b sinB + 1 c sinC = 6 abc [BUET 05-06] mgvavb: = 1 2 bc sinA = 1 2 ca sinB = 1 2 ab sinC sinA = 2 bc ; sinB = 2 ca ; sinC = 2 ab L.H.S = 1 a 2 bc + 1 b 2 ca + 1 c 2 ab = 6 abc = R.H.S (Proved) 13. ABC wÎfz‡R cosA = sinB – cosC n‡j †`LvI †h, wÎfzRwU mg‡KvYx| [BUET 05-06, 04-05] mgvavb: cosA = sinB – cosC cosA + cosC = sinB cosA – cos(A + B) = sinB 2sin 2A + B 2 sin B 2 = 2sinB 2 cos B 2 sin 2A + B 2 = cos B 2 sin A + B 2 = sin 2 – B 2 A + B 2 = 2 – B 2 A + B = 2 ABC mg‡KvYx| (Showed) 14. †`LvI †h, cot3A – 3cotA 3cot2A – 1 = cot3A [BUET 04-05] mgvavb: R.H.S = cot3A = cot(2A + A) = cotAcot2A – 1 cotA + cot2A = cotA cot2A – 1 2cotA – 1 cotA + cot2A – 1 2cotA = cot3A – cotA – 2cotA 2cotA 2cot2A + cot2A – 1 2cotA = cot3A – 3cotA 3cot2A – 1 = L.H.S (Showed) 15. cÖgvY Ki †h, tan20 tan40 tan80 = 3 [BUET 04-05; BUTex 11-12] mgvavb: L.H.S = tan20 tan40 tan80 = tan20 tan(60 – 20) tan(60 + 20) = tan20 tan60 – tan20 1 + tan60 tan20 tan60 + tan20 1 – tan60 tan20 = tan20 3 – tan20 1 + 3 tan20 3 + tan20 1 – 3 tan20 = tan20 . 3 – tan2 20 1 – 3tan2 20 = 3tan20 – tan3 20 1 – 3tan2 20 = tan(3 20) = tan60 = 3 = R.H.S (Proved)
4 Higher Math 1st Paper Chapter-7 16. hw` a = 2b Ges A = 3B nq, Z‡e wÎfy‡Ri †KvY ̧‡jv wbY©q Ki| [BUET 03-04] mgvavb: Avgiv Rvwb, ABC-G, a sinA = b sinB 2b sin3B = b sinB 2sinB = sin3B 2sinB = 3sinB – 4sin3B 4sin2B = 1 sinB = 1 2 B = 30 (Ans.) A = 3B = 90 (Ans.) C = 180 – (90 + 30) = 60 (Ans.) 17. hw` a = 2, b = 1 + 3 , C = 60 nq, Z‡e wÎfzRwU mgvavb K‡iv| [BUET 02-03] mgvavb: cosC = a 2 + b2 – c 2 2ab cos60 = 4 + 1 + 3 + 2 3 – c 2 2 2 (1 + 3) 1 2 = 4 + 1 + 3 + 2 3 – c 2 2 2 (1 + 3) c = 6 cosA = b 2 + c2 – a 2 2bc cosA = 1 + 3 + 2 3 + 6 – 4 2(1 + 3) 6 cosA = 1 2 A = 45 Avevi, A + B + C = 180 B = 180 – (45 + 60) B = 75 wb‡Y©q mgvavb: c = 6, A = 45, B = 75 (Ans.) 18. hw` sinx + siny = 1 Ges cosx + cosy = 0 nq Z‡e cÖgvY Ki †h, x + y = [BUET 02-03; RUET 18-19; MIST 17-18] mgvavb: sinx + siny = 1 2sin x + y 2 cos x – y 2 = 1 ...... (i) cosx + cosy = 0 2cos x + y 2 cos x – y 2 = 0 ...... (ii) (ii) (i) K‡i, cos x + y 2 sin x + y 2 = 0 cot x + y 2 = 0 x + y 2 = 2 ⸪ cot 2 = 0 x + y = (Ans.) 19. hw` I abvZ¥K I m~2‡KvY nq Ges cos2 = 3cos2 – 1 3 – cos2 nq, Z‡e †`LvI †h, tan = 2tan [BUET 01-02; CUET 09-10] mgvavb: cos2 = 3cos2 – 1 3 – cos2 1 – cos2 1 + cos2 = 4(1 – cos2) 2(1 + cos2) 2sin2 2cos2 = 2 . sin2 cos2 tan2tan2 tan = 2tan (Showed) [⸪ , abvZ¥K m~ÿ¥‡KvY, ZvB FYvZ¥K gvb MÖnY‡hvM ̈ bq] 20. †h‡Kv‡bv wÎfzR ABC Gi Rb ̈ †`LvI †h, 1 a cos2 A 2 + 1 b cos2 B 2 + 1 c cos2 C 2 = s 2 abc [BUET 00-01] mgvavb: L.H.S = 1 a cos2A 2 + 1 b cos2B 2 + 1 c cos2C 2 = 1 a s(s – a) bc + 1 b s(s – b) ca + 1 c s(s – c) ab = s(3s – a – b – c) abc = s(3s – 2s) abc = s 2 abc = R.H.S (Showed) 21. cÖgvY Ki †h, cos15 + sin15 cos15 – sin15 = 3 = 1 + tan15 1 – tan15 [BUET 98-99] mgvavb: L.H.S = cos15 + sin15 cos15 – sin15 = 1 + tan15 1 – tan15 = tan45 + tan15 1 – tan45 tan15 = tan (45 + 15) = tan60 = 3 = R.H.S (Proved)