Nội dung text Bài 05_Dạng 01. Lý thuyết và ứng dụng đạo hàm để giải bài toán tốc độ thay đổi của một đại lượng_GV.pdf
GV. Phan Nhật Linh - SĐT: 0817 098 716 1 Chương 1. ỨNG DỤNG ĐẠO HÀM ĐỂ KHẢO SÁT VÀ VẼ ĐTHS TOÁN 12 - CHƯƠNG TRÌNH MỚI Ta có đạo hàm f a ( ) là tốc độ thay đổi tức thời của đại lượng y f x = ( ) đối với x tại điểm x a = . Dưới đây, chúng ta xem xét một số ứng dụng của ý tưởng này đối với vật lí, hoá học, sinh học và kinh tế: • Nếu s s t = ( ) là hàm vị trí của một vật chuyển động trên một đường thẳng thì v s t = ( ) biểu thị vận tốc tức thời của vật (tốc độ thay đổi củ̉a độ dịch chuyển theo thời gian). Tốc độ thay đổi tức thời của vận tốc theo thời gian là gia tốc tức thời của vật: a t v t s t ( ) = = ( ) ( ). • Nếu C C t = ( ) là nồng độ của một chất tham gia phản ứng hoá học tại thời điểm t , thì C t ( ) là tốc độ phản ứng tức thời (tức là độ thay đổi nồng độ) của chất đó tại thời điểm t . • Nếu P P t = ( ) là số lượng cá thể trong một quần thể động vật hoặc thực vật tại thời điểm t , thì P t ( ) biểu thị tốc độ tăng trưởng tức thời của quần thể tại thời điểm t . • Nếu C C x = ( ) là hàm chi phí, tức là tổng chi phí khi sản xuất x đơn vị hàng hoá, thì tốc độ thay đổi tức thời C x ( ) của chi phí đối với số lượng đơn vị hàng được sản xuất được gọi là chi phí biên. • Về ý nghĩa kinh tế, chi phí biên C x ( ) xấp xỉ với chi phí để sản xuất thêm một đơn vị hàng hoá tiếp theo, tức là đơn vị hàng hoá thứ x +1 (xem SGK Toán 11 tập hai, trang 87 , bộ sách Kết nối tri thức với cuộc sống). Một trong những ứng dụng phổ biến nhất của đạo hàm là cung cấp một phương pháp tổng quát, hiệu quả để giải những bài toán tối ưu hoá. Trong mục này, chúng ta sẽ giải quyết những vấn đề thường gặp như tối đa hoá diện tích, khối lượng, lợi nhuận, cũng như tối thiểu hoá khoảng cách, thời gian, chi phí. Khi giải những bài toán như vậy, khó khăn lớn nhất thường là việc chuyển đổi bài toán thực tế cho bằng lời thành bài toán tối ưu hoá toán học bằng cách thiết lập một hàm số phù hợp mà ta cần tìm giá trị lớn nhất hoặc giá trị nhỏ nhất của nó, trên miền biến thiên phù hợp của biến số. Quy trình giải một bài toán tối ưu hoá: • Bước 1: Xác định đại lượng Q mà ta cần làm cho giá trị của đại lượng ấy lớn nhất hoặc nhỏ nhất và biểu diễn nó qua các đại lượng khác trong bài toán. • Bước 2: Chọn một đại lượng thich hợp nào đó, kí hiệu là x , và biểu diễn các đại lượng khác ở Bước 1 theo x . Khi đó, đại lượng Q sẽ là hàm số của một biến x . Tìm tập xác định của hàm số Q Q x = ( ) • Bước 3: Tìm giá trị lớn nhất hoặc giá trị nhỏ nhất của hàm số Q Q x = ( ) bằng các phương pháp đã biết và kết luận. BÀI 05 ỨNG DỤNG ĐẠO HÀM GIẢI BÀI TOÁN THỰC TIỄN A LÝ THUYẾT CẦN NHỚ 1 Tốc độ thay đổi của một đại lượng 2 Một số bài toán tối ưu hoá đơn giản
2 GV. Phan Nhật Linh - SĐT: 0817 098 716 Chương 1. ỨNG DỤNG ĐẠO HÀM ĐỂ KHẢO SÁT VÀ VẼ ĐTHS TOÁN 12 - CHƯƠNG TRÌNH MỚI Dạng 1: Bài toán tốc độ thay đổi của một đại lượng Ta có đạo hàm f a ( ) là tốc độ thay đổi tức thời của đại lượng y f x = ( ) đối với x tại điểm x a = . Dưới đây, chúng ta xem xét một số ứng dụng của ý tưởng này đối với vật lí, hoá học, sinh học và kinh tế: • Nếu s s t = ( ) là hàm vị trí của một vật chuyển động trên một đường thẳng thì v s t = ( ) biểu thị vận tốc tức thời của vật (tốc độ thay đổi củ̉a độ dịch chuyển theo thời gian). Tốc độ thay đổi tức thời của vận tốc theo thời gian là gia tốc tức thời của vật: a t v t s t ( ) = = ( ) ( ). • Nếu C C t = ( ) là nồng độ của một chất tham gia phản ứng hoá học tại thời điểm t , thì C t ( ) là tốc độ phản ứng tức thời (tức là độ thay đổi nồng độ) của chất đó tại thời điểm t . • Nếu P P t = ( ) là số lượng cá thể trong một quần thể động vật hoặc thực vật tại thời điểm t , thì P t ( ) biểu thị tốc độ tăng trưởng tức thời của quần thể tại thời điểm t . • Nếu C C x = ( ) là hàm chi phí, tức là tổng chi phí khi sản xuất x đơn vị hàng hoá, thì tốc độ thay đổi tức thời C x ( ) của chi phí đối với số lượng đơn vị hàng được sản xuất được gọi là chi phí biên. • Về ý nghĩa kinh tế, chi phí biên C x ( ) xấp xỉ với chi phí để sản xuất thêm một đơn vị hàng hoá tiếp theo, tức là đơn vị hàng hoá thứ x +1 (xem SGK Toán 11 tập hai, trang 87 , bộ sách Kết nối tri thức với cuộc sống). Bài tập 1: Khi bỏ qua sức cản của không khi, độ cao (mét) của một vật được phóng thẳng đứng lên trên từ điểm cách mặt đất 2 m với vận tốc ban đầu 24,5 m / s là ( ) 2 h t t t = + − 2 24,5 4,9 (theo Vật lý Đại Cương, NXB Giáo dục Việt Nam, 2016). a) Tìm vận tốc của vật sau 2 giây. b) Khi nào vật đạt độ cao lớn nhất và độ cao lớn nhất đó là bao nhiêu? c) Khi nào thì vật chạm đất và vận tốc của vật lúc chạm đất là bao nhiêu? Lời giải a) Theo ý nghĩa cơ học của đạo hàm, vận tốc của vật là v h t t = = − ( ) 24,5 9,8 m / s ( ). Do đó, vận tốc của vật sau 2 giây là v(2 24,5 9,8.2 4,9 m / s ) = − = ( ) . b) Vì h t( ) là hàm số bậc hai có hệ số a = − 4,9 0 nên h t( ) đạt giá trị lớn nhất tại 24,5 2,5 2 2 4,9 b t a = − = = (giây). Khi đó, độ cao lớn nhất của vật là h m (2,5 32,625 ) = ( ) . c) Vật chạm đất khi độ cao bằng 0 , tức là 2 h t t = + − = 2 24,5 4,9 0 hay t 5,08 (giây). Vận tốc của vật lúc chạm đât là v( 5,08 24,5 9,8 5,08 25,284 m / s ( ) − = − ( ). Vận tốc âm chứng tỏ chiều chuyển động của vật là ngược chiều dương (hướng lên trên) của trục đã chọn (khi lập phương trình chuyển động của vật). B PHÂN LOẠI VÀ PHƯƠNG PHÁP GIẢI TOÁN BÀI TẬP TỰ LUẬN
GV. Phan Nhật Linh - SĐT: 0817 098 716 3 Chương 1. ỨNG DỤNG ĐẠO HÀM ĐỂ KHẢO SÁT VÀ VẼ ĐTHS TOÁN 12 - CHƯƠNG TRÌNH MỚI Bài tập 2: Giả sử số lượng của một quần thể nấm men tại môi trường nuôi cấy trong phòng thí nghiệm được mô hinh hoá bằng hàm số ( ) 0,75t a P t b e− = + , trong đó thời gian t được tính bằng giờ. Tại thời điểm ban đầu t = 0 , quần thể có 20 tế bào và tăng với tốc độ 12 tế bào/giờ. Tìm các giá trị của a và b . Theo mô hình này, điều gì xảy ra với quần thể nấm men về lâu dài? Lời giải Ta có: ( ) ( ) 0,75 2 0,75 0,75 e , 0 e t t a P t t b − − = + . Theo đề bài, ta có: P(0 20 ) = và P(0 12 ) = . Do đó, ta có hệ phương trình: ( ) ( ) 2 20 20 1 1 15 0,75 12. 12 1 1 a a b b a b b = = + + = = + + Giải hệ phương trình này, ta được a = 25 và 1 4 b = . Khi đó, ( ) 0,75 2 0,75 18,75e 0, 0 1 e 4 t t P t t − − = + , tức là số lượng quần thể nấm men luôn tăng. Tuy nhiên, do ( ) 0.75 25 lim lim 100 1 e 4 t t t P t →+ →+ − = = + nên số lượng quần thể nấm men tăng nhưng không vượt quá 100 tế bào. Bài tập 3: Giả sử chi phí C x( ) (nghìn đồng) để sản xuất x đơn vị của một loại hàng hoá nào đó được cho bởi hàm số ( ) 2 3 C x x x x = + − + 30000 300 2,5 0,125 . a) Tìm hàm chi phí biên. b) Tìm C(200) và giải thích ý nghĩa. c) So sánh C(200) với chi phí sản xuất đơn vị hàng hoá thứ 201. Lời giải a) Hàm chi phí biên là ( ) 2 C x x x = − + 300 5 0,375 . b) Ta có: ( ) 2 C 200 300 5 200 0,375 200 14300 = − + = . Chi phí biên tại x = 200 là 14300 nghìn đồng, nghĩa là chi phí để sản xuất thêm một đơn vị hàng hoá tiếp theo (đơn vị hàng hoá thứ 201) là khoảng 14300 nghìn đồng. c) Chi phí sản xuất đơn vị hàng hoá thứ 201 là C C (201 200 1004372,625 990000 14372,625 ) − = − = ( ) (nghìn đồng) Giá trị này xấp xỉ với chi phí biên C(200) đã tính ở câu trên.
4 GV. Phan Nhật Linh - SĐT: 0817 098 716 Chương 1. ỨNG DỤNG ĐẠO HÀM ĐỂ KHẢO SÁT VÀ VẼ ĐTHS TOÁN 12 - CHƯƠNG TRÌNH MỚI Bài tập 4: Để loại bỏ x% chất gây ô nhiễm không khí từ khí thải của một nhà máy, người ta ước tính chi phí cần bỏ ra là ( ) 300 , 0 100 100 x C x x x = − (triệu đồng). Khảo sát sự biến thiên của hàm số y C x = ( ) . Từ đó, hãy cho biết: a) Chi phí cần bỏ ra sẽ thay đổi như thế nào khi x tăng? b) Có thể loại bỏ được 100% chất gây ô nhiễm không khí không? Vì sao? Lời giải Xét hàm số ( ) 300 ,0 100 100 x y C x x x = = − . Ta có: ( ) 2 30000 0 100 y x = − , với mọi x[0;100) . Do đó hàm số luôn đồng biến trên nửa khoảng 0;100) và ( ) 100 100 300 lim lim x x 100 x C x x → → − − = = + − nên đồ thị hàm số có tiệm cận đứng là x =100 . Bảng biến thiên: a) Chi phí cần bỏ ra C x( ) sẽ luôn tăng khi x tăng. b) Vì ( ) 100 lim x C x → − = + (hàm số C x( ) không xác định khi x =100) nên nhà máy không thể loại bỏ 100% chất gây ô nhiễm không khí (dù bỏ ra chi phí là bao nhiêu đi chăng nữa). Bài tập 5: Xét phản ứng hoá học tạo ra chất C từ hai chất A và B : A B C + ⎯⎯→ . Giả sử nồng độ của hai chất A và B bằng nhau A B a = = (mol/l) . Khi đó nồng độ của chất C theo thời gian t (t 0) được cho bởi công thức: 2 1 a Kt C aKt = + (mol/l) trong đó K là hằng số dương. a) Tìm tốc độ phản ứng tại thời điểm t 0 . b) Chứng minh nếu x C = thì ( ) ( ) 2 x t K a x = − c) Nêu hiện tượng xảy ra với nồng độ các chất khi t → + d) Nêu hiện tượng xảy ra với tốc độ phản ứng khi t → + Lời giải a) Tìm tốc độ phản ứng tại thời điểm t 0 . Tốc độ phản ứng là đạo hàm của C theo biến t