Nội dung text অধ্যায় ৩ সংখ্যা পদ্ধতি ও ডিজিটাল ডিভাইস-03 with solve.pdf
2......................................................................................................................................................................... ICT Chapter-3 Rhombus Publications wZbwU wel‡q †gvU cÖvß b¤^i: evsjv: 1011100 Bs‡iwR: 1010011 ICT: (+) 1001101 = 11111100 Bg‡bi wZbwU wel‡q cÖvß b¤^i evBbvwi‡Z (11 111 100)2 cÖkœ2 Y = (A + B) (A + B – ) (A – A + C) (K) ASCII Kx? [Xv. †ev. 24] (L) we‡qv‡Mi KvR †hv‡Mi gva ̈‡g Kiv m¤¢eÑ e ̈vL ̈v Ki| [Xv. †ev. 24] (M) DÏxc‡K cÖ`Ë jwRK dvskbwUi mZ ̈K mviwY ˆZwi Ki|[Xv. †ev. 24] (N) “Y †K eywjqvb A ̈vj‡Reivi mvnv‡h ̈ mijxKiY Kivi d‡j eZ©bx ev ̄Íevqb mnR n‡q‡QÓÑ we‡kølYc~e©K Dw3wUi mZ ̈Zv hvPvB Ki| [Xv. †ev. 24] mgvavb: K ASCII (American Standard Code for Information Interchange) n‡jv GKwU 7/8 we‡Ui Avjdv wbD‡gwiK †KvW hv Kw¤úDUvi I Input/ output device Gi Z_ ̈ ̄’vbvšÍ‡i e ̈eüZ nq| L evBbvwi msL ̈v c×wZ‡Z 2 Gi cwic~i‡Ki mv‡_ †hv‡Mi gva ̈‡g we‡qv‡Mi KvRwU Kiv m¤¢e| †Kv‡bv msL ̈v‡K 2 Gi cwic~i‡K iƒcvšÍi Kivi A_© n‡jv Zv‡K FYvZ¡K msL ̈vq cwiYZ Kiv| myZivs †Kv‡bv msL ̈vi mv‡_ Aci GKwU msL ̈vi 2 Gi cwic~iK †hvM Kivi A_© n‡jv c~‡e©i msL ̈vwU †_‡K c‡ii msL ̈vwU †_‡K c‡ii msL ̈v we‡qvM Kiv| M DÏxc‡K cÖ`Ë dvskwU n‡jv y = (A + B) (A + B – ) (A – + C) jwRK dvskwUi mZ ̈K mviYx: A B C A – B – A + B A + B – A – + C y = (A + B) (A + B – ) (A – + C) 0 0 0 1 1 0 1 1 0 0 0 1 1 1 0 1 1 0 0 1 0 1 0 1 0 1 0 0 1 1 1 0 1 0 1 0 1 0 0 0 1 1 1 0 0 1 0 1 0 1 1 1 1 1 1 1 0 0 0 1 1 0 0 1 1 1 0 0 1 1 1 1 N DÏxc‡Ki y jwRK dvskbwU eywjqvb A ̈vj‡Reivi gva ̈‡g mijxKiY Kiv n‡jv: y = (A + B) (A + B – ) (A – + C) = (A.A + A. B – + A. B + B. B – ) (A – + C) = (A + AB – + A.B + 0) (A – A – + C) [ A.A = A; B. B – = 0] = (A + AB – + AB) (A – + C) = AA – + AC + AA – B – + AB – C + AA – B + ABC [ AA – = 0] = AC + AB – C + ABC = AC (1 + B + B – ) = AC [ 1 + A = A] mijxK...Z dvskbwUi jwRK eZ©bx: A y = AC C cÖkœ3 P = (36)8 Ges Q = (2F)16 (K) †KvW Kx? [iv. †ev. 24] (L) 11 + 1 = 100 n‡Z cv‡iÑ e ̈vL ̈v Ki| [iv. †ev. 24] (M) P I Q Gi gvb‡K `kwgK msL ̈v c×wZ‡Z cÖKvk Ki| [iv. †ev. 24] (N) (P–Q) MvwYwZK cÖwμqvwU †hv‡Mi gva ̈‡g Kiv hvqÑ MvwYwZKfv‡e we‡kølY Ki| [iv. †ev. 24] mgvavb: K †KvW n‡jv g~jZ evBbvwi msL ̈v hvi Øviv wewfbœ eY©, cÖZxK, AwWI, wfwWI BZ ̈vw` cÖKvk Kiv nq| L evBbvwi msL ̈v c×wZ‡Z 11 + 1 = 100 m¤¢e| evBbvwi msL ̈v c×wZ‡Z ïaygvÎ 1 I 0 we` ̈gvb _vKvi †h‡Kv‡bv msL ̈v‡K ïaygvÎ 1 I 0 Gi gva ̈‡g cÖKvk Kiv nq| evBbvwi‡Z 11 I 1 Gi †hvMdj wb¤œiƒc| evBbvwj: †Wwm‡gj: (11)2 (3)10 +(1)2 +(1)10 (100)2 (4)10 myZivs †Wwm‡g‡j (1)10 = (1)2 , (3)10 = (11)2 I (4)10 = (100)2 nIqvi evBbvwi‡Z 110 + 1 = 100 m¤¢e M DÏxc‡K cÖ`Ë, P = (36)8 Q = (2F)16 P †K `kwgK gv‡b iƒcvšÍi (36)8 = [3 8 1 + 6 8 0 ]10 = [24 + 6]10 = (30)10 (36)8 = (30)10 Q †K `kwgK gv‡b iƒcvšÍi (2F)16 = [2 161 + F 160 ]10 = [2 161 + 15 160 ]10 = (47)10 (2F)16 = (47)10 P I Q †K `kwgK msL ̈v c×wZ‡Z cÖKvk h_vμ‡g (30)10, (47)10 N P-Q MvwYwZK cÖwμqvwU †hv‡Mi gva ̈‡g m¤úbœ Kivi Dcvq n‡jv: evBbvwi msL ̈v c×wZi mvnv‡h ̈, GKwU msL ̈v‡K Aci msL ̈vi 2 Gi cwic~i‡Ki mv‡_ †hvM Kiv| P I Q †K evBbvwi‡Z iƒcvšÍi Kiv n‡jv 011 3 6 110 A±vj: evBbvwi: (36)6 = (11110)2 = (00011110)2 [8 weU evBbvwi]
4 ........................................................................................................................................................................ ICT Chapter-3 Rhombus Publications cÖkœ5 Ab©e jvB‡eawi †_‡K 1wU Kjg I 1wU eB μq Kij| Kjg Gi g~j ̈ (76)8 UvKv Ges eB‡qi g~j ̈ (45)10 UvKv| (K) BDwb‡KvW Kx? [Kz. †ev. 24] (L) 8 + 8 = 10 nqÑ e ̈vL ̈v Ki| [Kz. †ev. 24] (M) DÏxc‡K DwjøwLZ Kjg I eB‡qi †gvU g~j ̈‡K †n·v‡Wwm‡g‡j cÖKvk Ki| [Kz. †ev. 24] (N) DÏxc‡K DwjøwLZ Kjg I eB‡qi g~j ̈ `ywUi cv_©K ̈ †hv‡Mi gva ̈‡g wbY©q Ki| [Kz. †ev. 24] mgvavb: K we‡k¦i †QvU eo mKj fvlv‡K Kw¤úDUv‡ii †KvWfz3 Kivi Rb ̈ †h †KvW e ̈eüZ nq Zv‡K Unicode e‡j| L †n·v‡Wwm‡gj c×wZ‡Z 8 + 8 = 10 nq| A_©vr (8)16 + (8)16 = (10)16 `kwgK c×wZ‡Z (8)10 + (8)10 = (16)10 16 †K †n·v‡Wwm‡g‡j iƒcvšÍi K‡i cvB, 16 16 LSB MSB 16 1 – 0 0 – 1 (16)10 = (16)16 (8)16 + (8)16 = (10)16 M DÏxc‡K cÖ`Ë, Kj‡gi g~j ̈ (76)8 UvKv eB‡qi g~j ̈ (45)10 UvKv Kj‡gi g~j ̈‡K A±vj n‡Z †Wwm‡g‡j iƒcvšÍi (76)8 = (7 8 1 + 6 8 0 )10 = (56 + 6)10 = (62)10 Kjg I eB‡qi †gvU g~j ̈ = [(62)10 + (45)10] = (107)10 UvKv †gvU g~j ̈‡K †n·v‡Wwm‡g‡j iƒcvšÍi: 16 107 LSB MSB 16 6 – 11 (B) 0 – 6 (107)10 = (6B)16 Kjg I eB‡qi †gvU g~j ̈ †n·v‡Wwm‡g‡j = (6B)16 UvKv N Kjg I eB‡qi g~j ̈ `ywUi cv_©K ̈ evBbvwi c×wZ‡Z 2 Gi cwic~iK †hv‡Mi gva ̈‡g wbY©q Kiv n‡jv: Kj‡gi g~j ̈ = (76)8 UvKv 111 7 6 110 A±vj: evBbvwi: (76)8 = (111110)2 = (00111110)2 [8 weU evBbvwi] eB‡qi g~j ̈ = (45)10 UvKv 2 45 LSB MSB 2 22 1 2 11 0 2 5 1 2 2 1 2 1 0 0 1 (45)10 = (101101)2 = (00101101)2 [8 weU evBbvwi] (45)10 Gi 1 Gi cwic~iK = 11010010 + 1 2 Gi cwic~iK = 11010011 Kjg I eB‡qi g~‡j ̈i cv_©K ̈: Kj‡gi g~j ̈ = 00111110 eB‡qi g~j ̈ (2 Gi cwic~iK) = + 11010011 †hvMdj = 1 00010001 K ̈vwi weU K ̈vwi weU = Ifvi‡d¬v [hv MÖnY‡hvM ̈ bq] Kjg I eB‡qi g~‡j ̈i cv_©K ̈ (10001)2 cÖkœ6 P Q X F A B wPÎ-1 wPÎ-2 (K) wW‡KvWvi Kx? [Kz. †ev. 24] (L) evBbvwi †hvM Ges eywjqvb †hvM GK bqÑ e ̈vL ̈v Ki| [Kz. †ev. 24] (M) wPÎ-1 Gi F Gi mijxK...Z gvb wbY©q Ki| [Kz. †ev. 24] (N) DÏxc‡Ki wPÎ-2 Gi X Gi gvb‡K ïaygvÎ bi †MB‡Ui mvnv‡h ̈ ev ̄Íevqb m¤¢eÑ wPÎmn we‡kølY Ki| [Kz. †ev. 24] mgvavb: K †h wWwRUvj eZ©bxi mvnv‡h ̈ Computer G e ̈eüZ fvlv‡K gvby‡li †evaMg ̈ fvlvq iƒcvšÍi Kiv nq Zv‡K wW‡KvWvi e‡j| L evBbvwi I eywjqvb †hvM GK bq| evBbvwi msL ̈v c×wZ‡Z ïaygvÎ 1 I 0 we` ̈gvb †h‡Kv‡bv msL ̈v cÖKvk Kivi Rb ̈| G msL ̈v c×wZ‡Z 0, 1, 10, 11, 100 Giƒc msL ̈v we` ̈gvb| wKš‘ eywjqvb A ̈vjReavq ïay 0 Ges 1 we` ̈gvb hv jwRK wg_ ̈v I mZ ̈ cÖKvk K‡i| evBbvwi c×wZ‡Z 1 + 1 = 10, hv cieZ©x msL ̈v| eywjqv‡b 1 + 1 = 1 A_v©r jwRK nvB| myZivs evBbvwi I eywjqvb †hvM GK bq| M wPÎ 1 Gi jwRK mvwK©U: A B F = ———— (A + B –––– + A – ) A – A + B ––––– F = (A + B –––– + A – ) = (A + B ––––– ––– + A –– ) = (A + B) A = A [cwi‡kvlY Dccv` ̈, A (A+B) = A]