Nội dung text Matrices Varsity Practice Sheet Solution.pdf
g ̈vwUa· I wbY©vqK Varsity Practice Sheet Solution 1 01 g ̈vwUa· I wbY©vqK Matrices and Determinants weMZ mv‡j DU-G Avmv cÖkœvejx 1. 1 2 1 3 0 – 1 2 3 p g ̈vwUa·wU e ̈wZμgx n‡j, p Gi gvb KZ? [DU 23-24] 4 3 3 4 5 3 3 5 DËi: 4 3 e ̈vL ̈v: e ̈wZμgx n‡j, 1 2 1 3 0 – 1 2 3 p = 0 1(0 + 3) – 3(2p – 3) + 2(– 2 – 0) = 0 3 – 6p + 9 – 4 = 0 8 – 6p = 0 p = 8 6 = 4 3 2. A = 1 2 2 5 n‡j, det(AA–1 ) Gi gvb KZ? [DU 21-22] 1 – 1 0 – 1 2 DËi: 1 e ̈vL ̈v: AA–1 = I [I n‡jv A‡f`K g ̈vwUa·] det(AA–1 ) = det(I) = 1 Note: A‡f`K g ̈vwUa‡·i wbY©vq‡Ki gvb 1 3. hw` A, B, C g ̈vwUa· wZbwUi AvKvi h_vμ‡g 4 5, 5 4 Ges 4 2 nq, Z‡e (AT + B)C g ̈vwUa·wUi AvKvi wK? [DU 20-21] 4 2 5 4 2 5 5 2 DËi: 5 2 e ̈vL ̈v: B g ̈vwUa‡·i μg 5 4 A T + B g ̈vwUa‡·i μg 5 4 C g ̈vwUa‡·i μg 4 2 (AT + B)C Gi †ÿ‡Î, (5 4) (4 2) (AT + B)C Gi μg: 5 2 4. A = 3 2 – 4 – 3 n‡j, det(2A–1 ) Gi gvb n‡jvÑ [DU 19-20] 1 4 – 4 4 – 1 4 DËi: – 4 e ̈vL ̈v: |A| = 3 2 – 4 – 3 = – 9 + 8 = – 1 det(2A–1 ) = 2 n |A| [†hLv‡b, n gvÎv] = 2 2 – 1 = – 4 5. A = a – 2 – 5 2 b 3 5 – 3 c GKwU eμ cÖwZmg g ̈vwUa· n‡j, a, b, c Gi gvb ̧‡jvÑ [DU 17-18] – 2, – 5, 3 0, 0, 0 1, 1, 1 2, 5, 3 DËi: 0, 0, 0 e ̈vL ̈v: AcÖwZmg/wecÖwZmg/eμ cÖwZmg g ̈vwUa‡·i †ÿ‡Î gyL ̈ K‡Y©i mKj fzw3 0 nq| 6. k Gi †Kvb gv‡bi Rb ̈ 1 1 1 1 k k 2 1 k 2 k 4 wbY©vqKwUi gvb k~b ̈ n‡e bv? [DU 17-18] k = 1 k = – 1 k = 3 k = 0 DËi: k = 3 e ̈vL ̈v: wbY©vq‡Ki ag© ̧‡jv g‡b ivL‡Z n‡e| k = 1 n‡j wbY©vq‡Ki wZbwU Kjvg B mgvb nq| gvb 0 k = – 1 n‡j wbY©vq‡Ki 1g I 3q Kjvg mgvb nq| gvb 0 k = 0 n‡j wbY©vq‡Ki 2q I 3q Kjvg mgvb nq gvb 0 wKš‘, k = 3 n‡j wbY©vq‡Ki †Kv‡bv Kjvg ev mvwi ci ̄úi mgvb n‡e bv| gvb k~b ̈ n‡e bv|
2 Higher Math 1st Paper Chapter-1 7. x x = 0 n‡j, x = ? [DU 14-15] , , , , , DËi: , e ̈vL ̈v: x = n‡j 1g I 3q Kjvg mgvb nq| d‡j wbY©vq‡Ki gvb k~b ̈| x = n‡j 1g I 2q Kjvg mgvb nq| d‡j wbY©vq‡Ki gvb k~b ̈| wKš‘ x = n‡j †Kv‡bv mvwi ev Kjvg ci ̄úi mgvb nqbv| ZvB x = , n‡j wbY©vq‡Ki gvb k~b ̈ n‡e| 8. cos – sin sin cos Gi wecixZ g ̈vwUa·Ñ [DU 13-14] cos – sin – sin cos cos sin – sin – cos cos sin – sin cos cos sin sin cos DËi: cos sin – sin cos e ̈vL ̈v: cos – sin sin cos –1 = 1 cos2 + sin2 cos sin – sin cos = cos sin – sin cos [⸪ cos2 + sin2 = 1] 9. 0 2 0 3 7x 0 2x + 7 9 + 5x 2x + 5 = 0 n‡j, x Gi gvb KZ? [DU 13-14] – 9 5 – 7 2 – 5 2 0 DËi: – 5 2 e ̈vL ̈v: (2x + 5)(0 – 3 2) = 0 2x + 5 = 0 x = – 5 2 10. BA Gi gvb wbY©q Ki, hw` A = 1 – i i 1 Ges B = i – 1 – 1 – i I i = – 1 nq| [DU 12-13; CU 18-19; RU 17-18] – 1 – i i – 1 1 7 1 3 1 0 0 1 2i – 2 – 2 – 2i DËi: 2i – 2 – 2 – 2i e ̈vL ̈v: BA = i – 1 – 1 – i 1 – i i 1 = i + i – 1 + i2 i 2 – 1 – i – i = 2i – 2 – 2 – 2i [⸪ i 2 = – 1] 11. hw` A = – 2 3 2 1 – 1 2 nq, Z‡e A –1 mgvbÑ [DU 10-11; JU 14-15] 1 2 3 4 1 0 0 1 3 1 4 2 1 3 2 4 DËi: 1 3 2 4 e ̈vL ̈v: A –1 = 1 (– 2) – 1 2 – 3 2 – 1 2 – 3 2 – 1 – 2 = 1 1 – 3 2 – 1 2 – 3 2 – 1 – 2 = 1 3 2 4 12. hw` A = 1 0 0 5 , B = 5 0 0 1 nq, Z‡e AB n‡jvÑ [DU 05-06, 03-04; JU 18-19, 16-17, 14-15; RU 08-09, 06-07] 5 0 0 5 5 10 0 5 10 0 0 5 0 5 5 10 DËi: 5 0 0 5 e ̈vL ̈v: AB = 1 0 0 5 5 0 0 1 = 5 + 0 0 + 0 0 + 0 0 + 5 = 5 0 0 5 13. hw` A = 2 3 – 3 2 nq, Z‡e A 2 gvbÑ [DU 04-05; JU 14-15; RU 08-09] – 5 – 12 12 5 5 – 12 – 12 5 – 5 12 12 – 5 – 5 12 – 12 – 5 DËi: – 5 12 – 12 – 5 e ̈vL ̈v: A 2 = 2 3 – 3 2 2 3 – 3 2 = 4 – 9 6 + 6 – 6 – 6 – 9 + 4 = – 5 12 – 12 – 5
g ̈vwUa· I wbY©vqK Varsity Practice Sheet Solution 3 14. hw` 1 x x 2 1 a a 2 1 b b 2 = 0 nq, Z‡e x = ? [DU 03-04; CU 02-03] – a ev b a ev – b – a ev – b a ev b DËi: a ev b e ̈vL ̈v: Option Test: x = a n‡j 1g I 2q Kjvg mgvb| gvb k~b ̈ x = – a n‡j †Kv‡bv mvwi ev Kjvg mgvb nq bv| x = b n‡j 1g I 3q Kjvg mgvb| gvb k~b ̈ x = – b n‡j †Kv‡bv mvwi ev Kjvg mgvb nq bv| x = a ev b 15. 10 11 12 13 14 15 16 17 18 wbY©vq‡Ki gvbÑ [DU 02-03; RU 11-12, 10-11, 06-07; JU 11-12, 10-11; JnU 10-11, 09-10] 0 1 10 5 DËi: 0 e ̈vL ̈v: Kjvg ̧‡jv mgvšÍi avivq Av‡Q| mwVK DËi 0| weMZ mv‡j GST-G Avmv cÖkœvejx 1. 2 0 1 3 3 3 x x 1 – x wbY©qv‡Ki (2, 1) Zg fzw3i mn ̧YK 9 n‡j, x Gi gvb KZ? [GST 23-24] 2 1.5 0.5 0 DËi: 2 e ̈vL ̈v: 2 0 1 3 3 3 x x 1 – x (2, 1) Zg fzw3i mn ̧YK, (– 1)2+1 3 3 x 1 – x = 9 – (3 – 3x – 3x) = 9 3 – 6x = – 9 – 6x = – 12 x = 2 Note: mn ̧YK = (– 1)r + c Abyivwk 2. hw` A = 4 3 2 5 ; B = 6 1 ; X = x y Ges AX = B nq, Zvn‡j †μgv‡ii m~Î g‡Z x I y Gi gvb KZ? [GST 23-24] 2, – 1 3, – 1 – 1, 3 – 1, 1 DËi: 2, – 1 e ̈vL ̈v: D = 4 3 2 5 = 14 Dx = 6 1 2 5 = 28 Dy = 4 3 6 1 = – 14 x = Dx D = 2 y = Dy D = – 1 3. A Ges (AT + B)C g ̈vwUa· `yBwUi μg h_vμ‡g 4 5 Ges 5 2 n‡j, C g ̈vwUa· Gi μg wK n‡e? [GST 22-23] 4 2 4 3 4 4 4 5 DËi: 4 2 e ̈vL ̈v: A g ̈vwUa‡·i μg 4 5 A T g ̈vwUa‡·i μg 5 4 A T + B g ̈vwUa‡·i μg 5 4 GLv‡b, (AT + B)C g ̈vwUa‡·i μg 5 2 (AT + B)C wbY©q‡hvM ̈ n‡e hw`, C g ̈vwUa· Gi μg: 4 2 (5 4) (4 2) nq| 4. 3 2 Ges 2 3 μg wewkó `ywU g ̈vwUa· h_vμ‡g A I B Gi fzw3 0 ev 1 n‡j Tr(BA) Gi m‡ev©”P gvb n‡eÑ [GST 21-22] 0 1 6 9 DËi: 6 e ̈vL ̈v: BA g ̈vwUa‡·i μg n‡e 2 2| fzw3 0 n‡j BA = 0 0 0 0 ZLb me©wb¤œ Trace = 0 Avevi, A I B Gi fzw3 1 n‡j BA = 1 1 1 1 1 1 1 1 1 1 1 1 = 3 3 3 3 ZLb m‡e©v”P Trace = 3 + 3 = 6 5. i 2 = – 1 n‡j, i i 3 i 5 i 3 i 5 i 7 i + i3 i 3 + i5 i 5 + i7 = ? [GST 20-21] – 1 0 1 i DËi: 0 e ̈vL ̈v: i i 3 i 5 i 3 i 5 i 7 i + i3 i 3 + i5 i 5 + i7 = i i 3 i 5 i 3 i 5 i 7 0 0 0 = 0 Note: i n + in + 2 = 0
4 Higher Math 1st Paper Chapter-1 weMZ mv‡j Agri-G Avmv cÖkœvejx 1. (x + 5, 2y + 1) = (2y + 4, 3y) n‡j, x Gi gvb KZ? [Agri. Guccho 20 -21] – 1 0 1 2 DËi: 1 e ̈vL ̈v: x + 5 = 2y + 4 x = 2y – 1 .... (i) 2y + 1 = 3y y = 1 (i) G y Gi gvb ewm‡q, x = 2 1 – 1 x = 1 weMZ mv‡j JU-G Avmv cÖkœvejx 1. wb‡Pi †KvbwU cÖwZmg g ̈vwUa·? [JU 22-23; RU 17-18] 0 – b b 0 b 0 0 – b b – b 0 0 0 0 – b b DËi: b 0 0 – b e ̈vL ̈v: cÖwZmg g ̈vwUa‡·i †ÿ‡Î A T = A nq| GLv‡b, bs Ack‡b A T = A kZ©wU cÖ‡hvR ̈ n‡q‡Q| Note: cÖwZmg g ̈vwUa· n‡j, aij = aji eμ cÖwZmg g ̈vwUa· n‡j, aij = – aji 2. A = 3 4 1 5 0 6 1 2 4 n‡j, A – 2I Gi gvb †KvbwU? [JU 22-23] 5 4 1 5 2 6 1 2 6 1 4 1 5 – 2 6 1 2 2 1 4 1 3 0 6 – 1 2 4 1 2 – 1 3 – 2 4 1 2 6 DËi: 1 4 1 5 – 2 6 1 2 2 e ̈vL ̈v: A – 2I = 3 4 1 5 0 6 1 2 4 – 2 1 0 0 0 1 0 0 0 1 = 3 4 1 5 0 6 1 2 4 – 2 0 0 0 2 0 0 0 2 = 1 4 1 5 – 2 6 1 2 2 3. A g ̈vwUa‡·i μg 2 3 Ges B g ̈vwUa‡·i μg 3 2 n‡j, AB Gi μg †KvbwU? [JU 22-23] 2 2 2 3 3 2 3 3 DËi: 2 2 e ̈vL ̈v: AB g ̈vwUa‡·i †ÿ‡Î, μg: 2 2 (2 3) (3 2) 4. A = 1 4 7 2 5 8 3 6 9 Ges B = 0 2 4 1 3 5 n‡j, A + B = ? [JU 21-22] 1 6 11 3 8 13 3 6 9 1 4 7 2 7 12 3 9 14 1 6 7 3 8 8 Am¤¢e DËi: Am¤¢e e ̈vL ̈v: A + B wbY©q Kiv hv‡e hw`, A I B g ̈vwUa‡·i mvwi msL ̈v I Kjvg msL ̈v ci ̄úi mgvb nq| GLv‡b, A I B g ̈vwUa·Ø‡qi mvwi msL ̈v I Kjvg msL ̈v mgvb bq| A + B wbY©q Am¤¢e| 5. A = 1 2 3 Ges B = (4 5 6) n‡j, AB = ? [JU 21-22] (4 10 18) 4 10 18 4 8 12 5 10 15 6 12 18 Am¤¢e DËi: 4 8 12 5 10 15 6 12 18 e ̈vL ̈v: A Gi μg 3 1 B Gi μg 1 3 AB Gi μg 3 3 GLv‡b ïaygvÎ bs Ack‡b 3 3 μ‡gi g ̈vwUa· we` ̈gvb| 6. k Gi †Kvb gv‡bi Rb ̈ k – 2 3 4 9 g ̈vwUa·wU Ae ̈wZμgx bq? [JU 21-22] 10 3 30 3 9 4 DËi: 10 3 e ̈vL ̈v: kZ©vbyhvqx, k – 2 3 4 9 = 0 9k – 18 – 12 = 0 9k = 30 k = 10 3