Nội dung text Bài 10_Đường thẳng và mặt phẳng trong không gian_Lời giải_Phần 1.pdf
CHƯƠNG IV: QUAN HỆ SONG SONG TRONG KHÔNG GIAN BÀI 10: ĐƯỜNG THẲNG VÀ MẶT PHẲNG TRONG KHÔNG GIAN A. TÓM TẮT KIẾN THỨC CƠ BẢN CẦN NẮM 1. KHÁI NIỆM MỞ ĐẦU Mặt bảng, màn hình máy tính hay mặt nước lúc tĩnh lặng là một số hình ảnh về một phần của mặt phẳng. Mặt phẳng không có bề dày và không có giới hạn. Chú ý - Để biểu diễn mặt phẳng ta thường dùng một hình bình hành và viết tên của mặt phẳng vào một góc của hình. Ta cũng có thể sử dụng một góc và viết tên của mặt phẳng ở bên trong góc đó. - Để kí hiệu mặt phằng ta dùng chữ cái in hoa hoặc chữ cái Hy Lạp đặt trong dấu ngoặc ( ). Trong Hình 4.1, ta có mặt phẳng ( ) P và mặt phằng ( ) . - Điểm A thuộc mặt phẳng ( ) P , kí hiệu A P ( ) . - Điểm B không thuộc mặt phẳng ( ) P , kí hiệu B P ( ) . Nếu A P ( ) ta còn nói A nằm trên ( ) P , hoặc ( ) P chứa A , hoặc ( ) P đi qua A. Chú ý. Để nghiên cứu hình học không gian, ta thường vẽ các hình đó lên bảng hoặc lên giấy. Hình vẽ đó được gọi là hình biểu diễn của một hình không gian. Hình biểu diễn của một hình không gian cần tuân thủ những quy tắc sau: - Hình biểu diễn của đường thẳng là đường thẳng, của đoạn thẳng là đoạn thẳng. - Hình biều diễn của hai đường thẳng song song là hai đường thẳng song song, của hai đường thẳng cắt nhau là hai đường thẳng cắt nhau. - Hình biểu diễn giữ nguyên quan hệ liên thuộc giữa điểm và đường thẳng. - Dùng nét vẽ liền để biều diễn cho đường nhìn thấy và nét đứt đoạn đề biểu diễn cho đường bị che khuất. Các quy tắc khác sẽ được học ở phần sau. 2. CÁC TÍNH CHẤT THỪA NHẬN Tính chất thừa nhận 1: Có một và chỉ một đường thẳng đi qua hai điểm phân biệt cho trước. Tính chất thừa nhận 2: Có một và chỉ một mặt phẳng đi qua ba điểm không thẳng hàng cho trước.
c. (SBC) và (SAD) d. (BCM) và (SAD) e. (CDM) và (SAB) f. (BDM) và (SAC) Giải a. Trong mp (ABCD): AC BD O AC SAC O SAC SBD BD SBD Mà S SAC SBD nên SO SAC SBD . b. Trong (ABCD) ta có: AB CD F AB SAB F SAB SCD CD SCD Mà S SAB SCD nên SF SAB SCD . c. Trong (ABCD) ta có: BC AD E BC SBC E SAD SBC AD SAD Mà S SAD SBC nên SE SAD SBC . d. Ta có: M MBC SAD E BC AD E MBC SAD Nên ME MBC SAD . e. Ta có: M MCD SAB F AB CD F MCD SAB Vậy MF MCD SAB . f. Ta có: M BDM SAC O BDM SAC Do đó MO BDM SAC . Ví dụ 2. Cho tứ diện ABCD. Gọi M, N, P là ba điểm lần lượt nằm trên ba cạnh AB, CD, AD. Tìm giao tuyến của các cặp mặt phẳng: E F O A D C B S M