Nội dung text XI - maths - chapter 11 - HYPERBOLIC FUNCTIONS (156-165).pdf
HYPERBOLIC FUNCTIONS JEE MAINS - VOL - II 156 If x is any real number then 2 3 1 ... .... 1 2 3 n x x x x x e n is called the exponential series . 2 3 1 ........... 1 .... 1 2 3 n n x x x x x e n . The function x e can be written as 2 2 x x x x x e e e e e for all x; (i) sinh 2 x x e e x 3 5 .... 1 3 5 x x x , x (ii) cosh 2 x x e e x 2 4 1 ..... 2 4 x x , x (iii) sinh tanh cosh x x x , x (iv) 1 sec , cosh hx x x (v) 1 cos sinh echx x , x 0 (vi) cosh coth sinh x x x , x 0 Hyperbolic functions are not circular functions and hence are not meant to use trigonometric identities. Hyperbolic Identities: (i) 2 2 cosh sinh 1, x x x (ii) 2 2 sech tanh 1, x x x (iii) 2 2 coth cos h 1, 0 x ec x x W.E-1:sinh 3/ 4 x then cosh x Sol: 2 2 2 2 cosh sinh 1 cosh 1 sinh x x x x 9 5 1 cosh 16 4 x Properties of Hyperbolic Functions: (i) sin h( ) x = -sin h x (ii) cosh( ) x = cosh x (iii) tanh( ) x = -tanh x (iv) coth( ) x = -coth x (v) sech( ) x = sech x (vi) cosech( ) x = -cosech x (i) sinh sinh cosh cosh sinh x y x y x y (ii) cosh cosh cosh sin h sinh x y x y x y (iii) tanh tanh tanh 1 tanh tanh x y x y x y (iv) coth coth 1 coth coth coth x y x y y x (i) 2 2 tanh sinh 2 2sinh cosh 1 tanh x x x x x (ii) 2 2 2 2 1 tanh cosh 2 cosh sinh 1 tanh x x x x x (iii) 2 2 tanh tanh 2 1 tanh x x x (iv) 1 tanh sinh 2 cosh 2 1 tanh x x x x W.E-2: tanh 3/ 5 x then cosh 2 x Sol: 2 2 1 tanh 34 17 cosh 2 1 tanh 16 8 x x x (i) sinh3 x =3sinh x+4sinh3 x (ii) cosh3 x = 4cosh3 x - 3 cosh x (iii) 3 2 3 tanh tanh tanh 3 1 3 tanh x x x x W.E-3: tanh 1 2 x then tanh 3 x Sol: 3 2 3tanh tanh 13 tanh 3 1 3tanh 14 x x x x HYPERBOLIC FUNCTIONS SYNOPSIS
157 HYPERBOLIC FUNCTIONS JEE MAINS - VOL - II 2 2 sin h ( )sin h ( ) sin sin h x y x y h x y 2 2 cos h ( )cos h ( ) cos sin h x y x y h x y (cos h sin h ) (cos h ( ) sin ( )) n nx x x nx h nx e (cosh sinh ) (cosh( ) sin ( )) n nx x x nx h nx e cosh 2nx + sinh 2nx = 1 tanh 1 tanh n x x cosh x, sech x are even functions. sinh x, cosech x, tanh x and coth x are odd functions. W.E.4: Show that f x x cosh is an even function Sol: cosh 2 2 x x x x e e e e f x x f x None of the six hyperbolic functions are periodic. sinh x, tanh x ,coth x and cosech x are one -one functions but cosh x and sech x are not one one functions as cosh cosh sec sec x x and h x h x for all x sinhx + coshx, sinhx - coshx are bijective functions Domain and range of hyperbolic functions: Function Domain Range Sinh x R R Cosh x R [1, ) Tanh x R 1,1 Coth x R - {0} R-[-1,1] Cosech x R - {0} R - {0} Sech x R (0,1] Since hyperbolic functions are defined in terms of exponential functions. Therefore Inverse hyperbolic functions can be expressed in terms of logarithmic functions. Inverse Hyperbolic Functions in Terms of Logarithmic Functions: i) 2 log 1 -1 e sinh x x x x W.E-5: If sinh 3 x . Then x = .... Sol: 1 2 sinh 3 sinh 3 log 3 3 1 x x = log 3 10 ii) cosh-1(x)= 2 log 1 1 e x x forx W.E - 6: If cosh 3 x then x = ..... Sol: 1 2 cosh 3 cosh 3 log 3 3 1 log 3 8 x x iii) tanh-1(x) = 1 1 log 1,1 2 1 x for x x Similarly we have iv) coth-1( x ) = 1 1 log 1 2 1 x for x x v) sech-1( x ) 2 1 1 log for (0,1] e x x x vi) cosech-1( x ) = 2 1 1 log for 0 e x x x = 2 1 1 loge x x for x < 0 Domain and Range of inverse Hyperbolic Functions: Function Domain Range Sinh-1 x R R Cosh-1 x [1,) [0,) Tanh-1 x (-1,1) R Coth-1 x R 1,1 R - {0} Sech-1 x (0,1] [0, ) Cosech-1 x R - {0} R - {0} sinh-1( x ) = 1 2 cosh 1 x 1 1 cos ech x 1 2 tanh 1 x x
HYPERBOLIC FUNCTIONS JEE MAINS - VOL - II 158 1 1 2 cosh sinh 1 x x 1 1 sec h x 2 1 1 tanh x x Euler’s Formula : cos sin ix e x i x x R cos sin ix e x i x x R Hyperbolic Functions Using Euler’s Formula : sinh (i x ) = i sin x cosh (i x ) = cos x tanh (i x ) = i tan x coth (i x ) = -i cot x cosech (i x ) = -i cosec x sech (i x ) = sec x sin sinh ix i x , cos cosh ix x tan tanh ix i x cot coth ix i x ,sec sec ix hx cos cosec ecix i h x 1 1 sinh sin x i ix 1 1 cosh cos x i x 1 1 tanh tan x i ix 1. The domain of cos ech x is 1) , 2) ,0 0, 3) 0, 4) ,0 2 The range of coth x is 1) , 1 1, , 2) 1,1 3) , 4) , 1 3. cosh 0 = 1) 0 2) 1 3) e 4) not defined 4. cosh 2 +sinh 2 = (EAM-2000) 1) 1 e 2) e 3) 2 1 e 4) 2 e 5. sinh 3 -cosh 3 = 1) 3 e 2) 3 e 3) 3 e 4) 3 e 6. cosh2+ sinh2 n = 1) cosh 2 sinh 2 n n 2) cosh 2 sinh 2 n n 3) cosh 2 n 4) sinh 2 n 7. If cosh x=sec then cos ec h x 1) sin 2) cos 3) tan 4) cot 8. If sinh x = 3 4 then sinh 2x = 1) 5 8 2) 15 8 3) 7 8 4) 17 8 9. If tanh x = 3 5 then sinh (2 x ) = 1) 15 8 2) 15 17 3) 18 17 4) 17 8 10. 4 4 cosh sinh x x = 1) cosh x 2) cosh2 x 3) sinh x 4) sinh2 x 11. If cosh x = 5 4 then cosh 3 x = 1) 61 16 2) 63 16 3) 61 63 4) 65 16 12. 3 1 2 sinh 2 = 1) log 2 18 e 2) log 3 8 e 3)log 3 8 e 4) log 8 27 e 13. 1 cosh 2 = 1)log 2 3 e 2)log 2 5 e 3) log 2 5 e 4) log 2 2 e 14. 1 1 T anh 3 = 1) 1 log 2 2 e 2) 2log 2 e LEVEL - I (C.W)
159 HYPERBOLIC FUNCTIONS JEE MAINS - VOL - II 3) 1 log 2 2 e 4) 2log 2 e 15. 1 1 2Tanh 2 = 1) 0 2) log 2e 3) log 3e 4)log 4e 16. 1 cosech 4 = 1) 17 1 log 4 e 2) log 17 1 e 3)log 17 1 e 4) 17 1 log 4 e 17. If 1 sinh log 5 26 e x then x = 1) 1 2) 2 3) 3 4)5 18. If 1 1 tanh log 1 e y x y then y (EAM-1998) 1) x 2) 4 x 3) 2 x 4) 3 x 19. If 1 1 tanh log , 1 1 e x x a x x then a= (EAM-2010) 1) 1 2) 2 3) 1 2 4) 1 4 20. If 1 cosh log 3 2 2 e k then k 1)1 2) 2 3) 3 4) 4 21. 1 sinh cot e = 1) cot +cosec 2) cot cos ec 3) secθ-tanθ 4) secθ+tanθ 22. -1 sech sinθ = 1) log cos 2 e 2) sin 2 loge 3)loge cos 4) cot 2 loge 23. If 1 1 sinh 2 sinh 3 cosh xthen x (EAM-2009) 1) 1 3 5 2 10 2 2) 1 3 5 2 10 2 3) 1 12 2 50 2 4) 1 12 2 50 2 24. If e π θ tan + 4 2 x=log then coshx= 1) secθ 2) cosecθ 3) sinθ 4) cosθ 25. cot sinh 4 loge If x then x 1) tan 2 2) cot 2 3) tan 2 4) cot 2 26. If cosh2 99 thentanh x x 1) 5 7 2 2) 7 5 2 3) 5 7 2 4) 7 5 2 27. sinhix = 1) isinx 2) sinix 3) -isinx 4) isin(ix) LEVEL - I (C.W)-KEY 01) 2 02)1 03) 2 04) 4 05)2 06)1 07)4 08) 2 09) 1 10) 2 11) 4 12) 2 13) 1 14) 1 15) 3 16)1 17) 4 18) 3 19) 3 20) 3 21) 1 22) 4 23) 3 24) 1 25) 3 26) 2 27) 1 LEVEL - I (C.W)-HINTS 1. The domain of cosechx is ,0 0, 2. The range of cothx is , 1 1, 3. Cosh 0 1 4. 2 Cosh 2 sinh 2 e 5. 3 3 3 3 3 2 e e e e e 6. 2 cosh 2 sinh 2 n e n n 7. cosh sec x 2 2 cosh sinh 1 x x 2 2 sinh tan x cos cot echx