Nội dung text 1A. MATRICES (01 - 22).pdf
NISHITH Multimedia India (Pvt.) Ltd., 1 MATRICES NISHITH Multimedia India (Pvt.) Ltd., JEE ADVANCED - VOL - I MATRICES IMPORTANT POINTS a) If A,B are symmetric matrices and commute then 1 A B , 1 AB , 1 1 A B are also symmetric matrices b) If a square matrix, which is commutative with every square matrix of the same order for multiplication then it is necessarily a scalar matrix. c) There is no square matrix P of order 3, such that DP-PD is equal to unit matrix, where D is a scalar matrix of order 3. d) If product of two non-zero square matrices is a zero matrix, then both of them must be singular matrices. e) If A,B are symmetric matrices of same order and X AB BA , y AB BA then XY YX 0 f) Product of two upper triangular matrices of same order, is also an upper triangular matrix. g) If A,B are two idempotent matrices of same order, then A + B is also an idempotent if AB BA 0 h) If A is idempotent and A B I then B is idempotent and AB BA 0 i) If A,B are two idempotent matrices then A + B is idempotent if AB = BA = 0 j) If , an idempotent matrix is also a skew symmetric then it is a null matrix k) T T adj A adjA is a null matrix for all square matrix A l) If n m A adj and ij n m C C is a cofactor matrix of A then n 1 C A m) If A be a square matrix of order 3, such that transpose of inverse of A, is it self then adj adjA 1 n) matrix A, such that 2 A A I 2 and for all n n N 2, then 1 n A nA n I o) If A,B are square matrices of same order and A 0 then for a positive integer n, 1 1 n n A BA A B A p) If A is an orthogonal matrix and B = AP (P-non- singular matrix) then 1 PB is also orthogonal matrix. LEVEL -V SINGLE ANSWER QUESTIONS 1. Let A,B,C,D be (not necessarily square) real matrices such that AT=BCD, B T=CDA,CT=DAB and DT=ABC for the matrix S=ABCD which of the following is true a) 2 S S b) 3 S S c) 4 S S d) T SS S 2. Let A and B be two square matrices of the same order such that , m AB BA A O , n B O for some integers m and n, such that greatest common divisor of m, n is 1. Then the least positive integer ‘r’ such that ( )r A B O is A) m n B) m n C) GCD m n, D) LCM m n, 3. a b A b a and 2 , m MA A m N for some matrix M, then which one of the following is correct? A) 2 2 2 2 m m m m a b M b a B) 2 2 1 0 ( ) 0 1 m M a b C) 1 0 ( ) 0 1 m m M a b D) 2 2 1 ( )m a b M a b b a
MATRICES 2 NISHITH Multimedia India (Pvt.) Ltd., JEE ADVANCED - VOL - I NISHITH Multimedia India (Pvt.) Ltd., 4. Let 3 2 B A A A I 2 3 where I is a unit matrix and A = 1 3 2 2 0 3 1 1 1 then the transpose of matrix B is equal to (A) 8 14 7 21 1 7 14 21 8 (B) 2 21 14 14 1 21 7 7 8 (C) 1 0 0 0 1 0 0 0 1 (D) 3 1 0 1 1 0 3 1 0 5. If 1 2 1 3 A and if 6 A KA I 205 then (A) K 11 (B) K 22 (C) K 33 (D) K 44 6. Let A is a 3 3 matrix and 3 3 A a ij . If for every column matrix X, if . . T X A X O and 23 a 2009 then 32 a ...... (A) 2009 (B) -2009 (C) 0 (D) 2008 7. If A,B are two square matrices such that AB = B, BA =A then (A+B)n ( ) n N is a) A+B b) 2n (A+B) c) 2n–2 (A+B) d) 2n–1 (A+B) 8. If 3 1 2 3 2 is a symmetric matrix then the value of is A) 5 B) -4 C) 6 D) -6 9. If Adj B A and, P Q 1 then 1 1 Adj Q B P . . (A) APQ (B) PAQ (C) B (D) A 10. If A and B are any two 2 2 matrices , then det (A+B) = 0 does not implies (A) det A + det B = 0 (B) det A = 0 or det B = 0 (C) det A =0 and det B = 0 (D) all the above 11. Let P be a non-singular matrix and 2 n I P P P O then 1 P is a) n P b) P c) n 1 P d) I 12. The point of intersection of the planes 2 x y z 2 3 (1 )(1 ) 2 2 2 3 ( 1),3 2 1 x y z x y z (where is an imaginary cube root of unity, 2 3 1 0, 1 ) is a) (1, 1, 1) b) (1, –1, 1) c) (1, –1, –1) d) (–1, –1, –1) 13. The number of 3 3 matrices A whose entries are either 0 or 1 and for which the system 1 0 0 x A y z has exactly two distinct solutions is A) 0 B) 9 2 1 C) 168 D) 2 14. The system of equations x y z 1 x y z 1 x y z 1 has no solution , if is (A) Not - 2 (B) 1 (C) -2 (D) Either -2 or 1 15. One of the values of k for which the planes kx y z 4 0, 4 2 0 x ky z and 2 2 0 x y z intersect in a straight line A) 0 B) 1 C) 2 D) 3 16. Let 1 2 3 4 A and 0 , 0 a B a b N b then a) there exists exactly one B such that AB=BA b) There exists infinitely many B’s such that AB=BA c) there cannot exist any B such that AB=BA d) there exists more than one but finite number of B’s such that AB=BA
NISHITH Multimedia India (Pvt.) Ltd., 3 MATRICES NISHITH Multimedia India (Pvt.) Ltd., JEE ADVANCED - VOL - I 17. If cos sin 0 1 , , sin cos 1 1 A B T C ABA then T n A C A equals to n N a) 1 1 0 n b) 1 0 1 n c) 0 1 1 n d) 1 0 n 1 18. If 1 0 1 0 , 1 7 0 1 A I and 2 A A I 8 , then, the value of is (A) 7 (B) 8 (C) -7 (D) -8 19. If 0 0 0 b a c a c b A and 2 2 2 ac bc c ab b bc a ab ac B , then 2 ( ) A B (A) A (B) B (C) I (D) 2 2 A B 20. If 0 0 , 0 a b A a c b c if 1 1 2 T Q A A and 2 1 2 T Q A A . Then 1 2 Q .Q is equal to (A) 3 I (B) O3 (C) A (D) 2 A 21. P is an orthogonal matrix and A is a periodic matrix with period 4, T Q PAP then T 2021 X P Q P is equal to A) A B) 2 A C) 3 A D) 4 A 22. The matrix 2 2 2 2 2 2 2 2 2 2 2 2 2 2 b a ab a b a b ab a b a b a b is A) Idempotent matrix B) nil potent matrix C) Orthogonal matrix D) Unit matrix 23. If i 1 , 1 5 2 a , 1 5 2 b then which of the following matrix is idempotent (A) a i i b (B) b i i a (C) a i i b (D) a b b a 24. Let / 5 and cos sin A sin cos , then 11 12 13 14 B A A A A is (A) singular (B) non-singular (C) symmetric (D) Idempotent 25. The inverse of the matrix 1 0 0 A 1 0 1 a is b c (A) 1 1 0 1 0 0 ac b c a (B) 1 0 0 1 0 0 b c a (C) 1 1 0 1 0 0 ac b a (D) 0 0 1 0 1 1 c a ac b 26. If cos sin 0 sin cos 0 , 0 0 1 x x F x x x cos 0 sin ( ) 0 1 0 sin 0 cos y y G y y y then Adj F x G y ( ( ). ( )) = (A) F (x) G(-y) (B) 1 1 F x G y (C) 1 1 G y F x (D) G y F x ( ) ( )
MATRICES 4 NISHITH Multimedia India (Pvt.) Ltd., JEE ADVANCED - VOL - I NISHITH Multimedia India (Pvt.) Ltd., 27. If 3 1 1 2 3 0 1 2 a A and 1 A 5/ 2 3/ 2 1/ 2 4 3 1/ 2 1/ 2 1/ 2 c then (A) a 2, c 1/ 2 (B) a 1, c 1 (C) a 1, c 1 (D) a 1/ 2, c 1/ 2 28. If cos sin 0 A , sin cos 0 0 0 , then which of the following is not true? (A) T A , A , (B) 1 A , A , (C) Adj A , A , (D) T A , A , 29. If AK = O for some positive integral value of K and (I–A)P = I+A+A2 ............+AK–1 then p is ('O' is a null matrix, 'A' is square matrix of order n) a) –1 b) –2 c) –3 d) 1 30. For the equations x y z 2 3 1, 2 3 2, x y z 5 5 9 4 x y z (A) there is only one solution (B) there exist infinitely many solutions (C) there is no solution (D) the equations are inconsistent. 31. The system of equations 6x 5y z 0 3x y 4z 0 x 2y 3z 0 has (A) only a trivial solution for R (B) exactly one nontrivial solution for some real (C) infinite number of nontrivial solutions for one value of (D) none of these. 32. If 0 1 0 A and B 1 1 5 1 , then the value of for which A2 = B is [IIT-2003] (A) 1 (B) -1 (C) 4 (D) no real values. 33. If P is a 3 3 matrrix such that 2 T P P I where T P is the transpose of P and I is 3 3 identity matrix then there exists a column matrix 0 0 0 x X y z such that (IIT - 2012) A) 0 0 0 PX B) PX X C) PX X 2 D) PX X 34. Let P aij be a 3 3 matrix and Let Q bij where 2 i j ij ij b a for 1 , 3. i j If the determinant of P is 2 then the determinant of the matrix Q is (IIT - 2012) A) 10 2 B) 11 2 C) 12 2 D) 13 2 35. Let 1 be be a cube root of unity and S be the set of all non-singular matrices of the form 2 1 1 1 a b c , where each of a b, and c is either or 2 . Then the number of distinct matrices in the set S is(IIT - 2011) A) 2 B) 6 C) 4 D) 8 MULTI ANSWER QUESTIONS 36. If the adjoint of a 3 3 matrix P is 1 4 4 2 1 7 1 1 3 then the possible values of the determinent of P is (are) (IIT - 2012) A) -2 B) -1 C) 1 D) 2