Nội dung text Vector Engineering Practice Sheet Solution (HSC 26).pdf
†f±i Engineering Practice Sheet Solution (HSC 26) 1 02 †f±i Vector WRITTEN weMZ mv‡j BUET-G Avmv cÖkœvejx 1| Gi †Kvb gv‡bi Rb ̈ wb‡¤œi †f±i wZbwU mgZjxq n‡e? cÖ`Ë †f±i·qi mgZ‡ji Ici j¤^ GKK †f±i wbY©q Ki| a = i ^ + j ^ + k ^ , b = 2i ^ – 4 k ^ , Ges c = i ^ + j ^ + 3k ^ . [BUET 20-21] mgvavb: a = i ^ + j ^ + k ^ , b = 2i ^ – 4k ^ , c = i ^ + j ^ + 3k ^ , †f±i wZbwU mgZjxq n‡e hw`, 1 2 1 1 0 1 – 4 3 = 0 1(0 + 4) – 1(6 + 4) + 1(2 – 0) = 0 4 – 10 + 2 = 0 = 5 3 (Ans.) cÖ`Ë †f±i·qi mgZ‡ji Dci j¤^ GKK †f±i = a I b Gi mgZ‡ji Dci j¤^ GKK †f±i [⸪a , b , c mgZjxq] j¤^ GKK †f±i, ^ = a b |a | b a b = i ^ 1 2 j ^ 1 0 k ^ 1 – 4 = i ^ (– 4 – 0) – j ^ (– 4 – 2) + k ^ (0 – 2) = – 4i ^ + 6j ^ – 2k ^ Ges |a | b = (– 4) 2 + (6) 2 + (– 2) 2 = 2 14 ^ = – 4i ^ + 6j ^ – 2k ^ 2 14 = – 2(2i ^ – 3j ^ + k ^ ) 2 14 = 2i ^ – 3j ^ + k ^ 14 (Ans.) 2| a = 2i ^ + j ^ – 3k ^ Ges b = i ^ – 2j ^ + k ^ †f±i `ywUi Dci j¤^ GKwU †f±i wbY©q Ki hvi gvb 5 GKK| [BUET 19-20] mgvavb: a – b – = i ^ 2 1 j ^ 1 – 2 k ^ – 3 1 = i ^ (1 – 6) – j ^ (2 + 3) + k ^ (– 4 – 1) = – 5i ^ – 5j ^ – 5k ^ ^ = a – b – | | a – b – = – 5i ^ – 5j ^ – 5k ^ (– 5) 2 + (– 5) 2 + (– 5) 2 = 5i ^ + 5j ^ + 5k ^ 5 3 = i ^ + j ^ + k ^ 3 wb‡Y©q †f±i = 5 ^ = 5 3 (i ) ^ + j ^ + k ^ (Ans.) 3| GKwU GKK †f±i wbY©q Ki hv a = i ^ + j ^ + k ^ Ges b = i ^ – j ^ – k ^ †f±i؇qi mgZjxq Ges a †f±‡ii Dci j¤^| [BUET 18-19] mgvavb: wb‡Y©q †f±i, r = a + mb = (i ^ + j ^ + k ^ ) + m (i ^ – j ^ – k ^ ) = (1 + m)i ^ + (1– m)j ^ + (1– m)k ^ Avevi, r .a = 0 1 + m + 1 – m + 1 – m = 0 3 – m = 0 m = 3 r = 4i ^ – 2j ^ – 2k ^ wb‡Y©q GKK †f±i, r ^ = r | r| = 4i ^ – 2j ^ – 2k ^ (4) 2 + (– 2) 2 + (– 2) 2 = 4i ^ – 2j ^ – 2k ^ 2 6 = 2i ^ – j ^ – k ^ 6 (Ans.)
†f±i Engineering Practice Sheet Solution (HSC 26) 3 AB I AC †K mwbœwnZ evû a‡i Aw1⁄4Z mvgvšÍwi‡Ki †ÿÎdj, = |AB | AC = (5) 2 + (– 11) 2 + (– 18) 2 = 470 (Ans.) 10| P I Q we›`yi ̄’vbv1⁄4 h_vμ‡g (1, 1, 1) Ges (3, 2, – 1) n‡j, PQ †f±i wbY©q Ki| [BUET 03-04] mgvavb: OP = i ^ + j ^ + k ^ OQ = 3i ^ + 2j ^ – k ^ PQ = OQ – OP = (3 – 1)i ^ + (2 – 1)j ^ +(– 1 – 1)k ^ = 2i ^ + j ^ – 2k ^ (Ans.) 11| a – = i ^ + 2j ^ – k ^ Ges b – = j ^ – i ^ – 2k ^ †f±i؇qi ga ̈Kvi †KvY wbY©q Ki| [BUET 02-03] mgvavb: cos = a – .b – |a – |.|b – | = – 1 + 2 + 2 1 2 + 22 + (– 1) 2 . (– 1) 2 + (1) 2 + (– 2) 2 = 3 6. 6 = 3 6 = 1 2 cos = 1 2 = cos60 = 60 (Ans.) 12| hw` (ai ^ + bj ^ + k ^ ) (2i ^ + 2j ^ 3k ^ ) = i ^ – j ^ nq, Z‡e a Ges b Gi gvb wbY©q Ki| [BUET 01-02] mgvavb: i ^ a 2 a ^ b 2 k ^ 1 3 = i ^ – j ^ = i ^ (3b – 2) – j ^ (3a – 2) + k ^ (2a – 2b) = i ^ – j ^ Dfq cÿ n‡Z i ^ I j ^ Gi mnM mgxK...Z K‡i cvB, 3b – 2 = 1 Ges 3a – 2 = 1 b = 1 a = 1 a = 1, b = 1 (Ans.) weMZ mv‡j KUET-G Avmv cÖkœvejx 13| 2i ^ – j ^ + 2k ^ †f±iwU x A‡ÿi mv‡_ †h †KvY Drcbœ K‡i Zv wbY©q Ki| [KUET 04-05] mgvavb: a = 2i ^ – j ^ + 2k ^ ; |a | = 3 x A‡ÿi eivei †f±i b = i ^ ; |b | = 1 a . b = ab cos cos = a . b |a | |b | cos = (2i ^ – j ^ + 2k ^ ) . i ^ 3 = cos–1 2 3 (Ans.) 14| hw` a = i ^ + j ^ + k ^ , b = 3i ^ + 3j ^ – 2k ^ nq Zvn‡j b †f±‡ii Dci a †f±‡ii Awf‡ÿc †ei Ki| [KUET 03-04] mgvavb: a = i ^ + j ^ + k ^ , b = 3i ^ + 3j ^ – 2k ^ a . b = ab cos acos = a . b b = (i ^ + j ^ + k ^ ) ( 3 i ^ + 3j ^ – 2k ^ ) ( 3) 2 + 32 + 22 = 3 + 3 – 2 16 = 3 + 1 4 (Ans.) a – b – |a – | cos weMZ mv‡j RUET-G Avmv cÖkœvejx 15| abvZ¥K x A‡ÿi m‡1⁄2 †f±i A = – 3i + j †h †KvY Drcbœ K‡i Zv wbY©q Ki| [RUET 18-19] mgvavb: = cos–1 Ax A 2 x + A 2 y = cos–1 – 3 3 + 1 = 150 Ae ̄’vb 2q PZzf©v‡M 1 150 3
4 Higher Math 1st Paper Chapter-2 16| AB = 3i ^ + 2j ^ – k ^ Ges AC = 5i ^ – j ^ + 2k ^ n‡j, AB I AC †K mwbœwnZ evû a‡i AswKZ mvgvšÍwi‡Ki †ÿÎdj wbY©q Ki| [RUET 13-14; BUET 09-10, 04-05] mgvavb: AB AC = i ^ 3 5 j ^ 2 – 1 k ^ – 1 2 = 3i ^ – 11j ^ – 13k ^ AB I AC †K mwbœwnZ evû a‡i AswKZ mvgvšÍwi‡Ki †ÿÎdj, |AB AC | = 3 2 + (11) 2 + (– 13) 2 = 299 (Ans.) weMZ mv‡j CUET-G Avmv cÖkœvejx 17| aaæeK a Gi gvb wbY©q Ki †hb 2i ^ + j ^ – k ^ , 3i ^ – 2j ^ + 4k ^ , i ^ – 3j ^ + ak ^ †f±i wZbwU GKB mgZ‡j _v‡K| [CUET 07-08] mgvavb: 2 3 1 1 –2 –3 –1 4 a = 0 – 4a + 24 – 3a + 4 + 7 = 0 a = 5 (Ans.) 18| †f±i c×wZ‡Z GKwU wÎfz‡Ri †ÿÎdj wbY©q Ki, hvi kxl©we›`yÎq h_vμ‡g A(1, 3, 2), B(2, – 1, 1) Ges C(– 1, 2, 3). [CUET 04-05] mgvavb: OA = i ^ + 3j ^ + 2k ^ , OB = 2i ^ – j ^ + k ^ , OC = – i ^ + 2j ^ + 3k ^ GLb, AB = OB – OA = i ^ – 4j ^ – k ^ , BC = OC – OB = – 3i ^ + 3j ^ + 2k ^ ABC = 1 2 |AB BC | AB BC = i ^ 1 –3 j ^ –4 3 k ^ –1 2 = – 5i ^ + j ^ – 9k ^ ABC = 1 2 25 + 1 + 81 = 1 2 107 (Ans.) weMZ mv‡j BUTex-G Avmv cÖkœvejx 19| †`LvI †h, A = 8i ^ + j ^ – 6k ^ Ges B = 4i ^ – 2j ^ + 5k ^ †f±i `yBwU ci ̄úi j¤^| [BUTex 07-08] mgvavb: A . B = (8i ^ + j ^ – 6k ^ ).(4i ^ – 2j ^ + 5k ^ ) = 8 4 + 1 (– 2) + (– 6) 5 = 0 A Ges B †f±iØq ci ̄úi j¤^| (Showed) 20| A I B we›`yi Ae ̄’vb †f±i h_vμ‡g, 2i ^ + 3j ^ – 4k ^ I 4i ^ – 3j ^ + 2k ^ | AB Gi gvb Ges AB eivei GKK †f±i wbY©q Ki| [BUTex 06-07] mgvavb: AB = OB – OA = (4i ^ – 3j ^ + 2k ^ ) – (2i ^ + 3j ^ – 4k ^ ) = 2i ^ – 6j ^ + 6k ^ |AB | = 4 + 36 + 36 = 76 (Ans.) awi, AB eivei GKK †f±i = a ^ a ^ = AB |AB | = 2i ^ – 6j ^ + 6k ^ 76 (Ans.) 21| †`LvI †h, r = i ^ + j ^ + k ^ †f±iwU Aÿ·qi mv‡_ mgvb †Kv‡Y AvbZ| [BUTex 05-06] mgvavb: awi, x Aÿ eivei GKK †f±i, a = i ^ GLb, | a| = 1 r = i ^ + j ^ + k ^ Ges |r | = 1 2 + 12 + 12 = 3 Avevi, cos = r .a |r | |a | cos = 1 1 3 1 = 1 3 = cos–1 1 3 Abyiƒcfv‡e, y I z A‡ÿi †ÿ‡Î cÖgvY Kiv hvq, = cos–1 1 3 (Showed) 22| A = 3i ^ – 2j ^ + k ^ , B = i ^ – 3j ^ + 5k ^ I C = 2i ^ + j ^ – 4k ^ †f±img~n Øviv GKwU mg‡KvYx wÎfzR ˆZwi Kiv wK m¤¢e? [BUTex 03-04] mgvavb: GLv‡b, B + C = i ^ – 3j ^ + 5k ^ + 2i ^ + j ^ – 4k ^ = 3i ^ – 2j ^ + k ^ = A A , B Ges C wÎfzR MVb K‡i| GLb, |A | 2 = 9 + 4 + 1 = 14 Avevi, |B | 2 = 1 + 9 + 25 = 35 Avevi, |C | 2 = 4 + 1 + 16 = 21 |B | 2 = |A | 2 + |C | 2 = 35 Avevi, A . C = 6 – 2 – 4 = 0 †h‡nZz †f±i ؇qi DU ̧Ydj k~b ̈ Ges B 2 = A2 + C2 ; mg‡KvYx wÎfzR MVb Kiv m¤¢e| (Ans.)