Nội dung text EXAM NIGHT OF MATHS.pdf
2 2) Find dy dx for e xy = x + y. A) dy dx = 1+ye xy 1−xe xy B) dy dx = 1−ye xy xe xy−1 C) dy dx = e xy−y x−e xy D) dy dx = y−e xy e xy−x 3) If y 2 + sin(xy) = 4, what is dy dx at the point (0, 2)? A) 0 B) -1 C) − 1 2 D) Undefined 4) Find dy dx for the equation sin(xy) = cos(x + y). A) dy dx = − ycos(xy) + sin(x + y) xcos(xy) − sin(x + y) B) dy dx = − sin(x + y) + ycos(xy) xcos(xy) + sin(x + y) C) dy dx = − ycos(xy) − sin(x + y) cos(xy) + sin(x + y) D) dy dx = − sin(x + y) − ycos(xy) xcos(xy) − sin(x + y)
3 5) Find dy dx for the equation ln(x 2 + y 2 ) = e xy . A) dy dx = (x 2+y 2)e xy(y)−2x 2y−(x 2+y2)e xy(x) B) dy dx = 2x−(x 2+y 2)e xy(y) 2y−(x 2+y2)e xy(x) C) dy dx = (x 2+y 2)e xy(y)−2x 2y−(x 2+y2)e xy(x) D) dy dx = 2y−(x 2+y 2)e xy(x) 2x−(x 2+y2)e xy(y) 6) Find dy dx for the equation, x 2 = y + x y − x A) x 4 − 4x 2 − 1 (x 2 − 1) 2 B) x 4 + 4x 2 + 1 (x 2 − 1) 2 C) x 4 + 4x 2 + 1 (x 2 − 1) 2 D) 2y − 2x(y − x) 2 x 2 OLD EXAM 1) Find dy dx when x 2 + y 2 = a 2 . A. − x y B. − y x C. y x D. x y