Nội dung text Chuyên đề 17. ĐƯỜNG TRÒN NGOẠI TIẾP, ĐƯỜNG TRÒN NỘI TIẾP.doc
AMFMEQCQ AFEC b) Ta có: EBBFENBNBPFP ENFPEQFM EDDQDMFD EDDF . Nhận xét. Bạn đọc có thể chứng minh bài toán đảo của bài toán trên để từ đó có thêm hai dấu hiệu nhận biết tứ giác ngoại tiếp. Ví dụ 3. Tính cạnh của hình 12 cạnh đều theo bán kính của đường tròn ngoại tiếp. Giải Tìm cách giải. Để trình độ dài cạnh 12 cạnh đều, ta có hai cách: Cách 1. Tính cạnh của lục giác đều trước. Sau đó dùng định lý Py-ta-go tính cạnh đa giác. Cách 2. Dùng công thức: 180180 2.sin2.tanaRr nn . Trong đó: a: độ dài cạnh đa giác đều. R: bán kinh đường tròn ngoại tiếp đa giác r: bán kình đường tròn nội tiếp đa giác n: số cạnh đa giác đều Trình bày lời giải Cách 1. Xét hình 12 cạnh đều nội tiếp đường tròn có cạnh AB như hình vẽ, thì AC là cạnh của hình lục giác đều. Gọi AC cắt OB tại I, suy ra OBAC . Ta có: OACΔ là tam giác đều nên: 22 ACR AI . OAIΔ vuông tại I nên: 2 22233 42 RR OIOAAIOI 233 22 R R BIOBOIR . ABIΔ vuông tại I nên: 2 2 2 2222 23 23 44 R R ABAIBIR 62843 23 22 R R ABR Cách 2. Áp dụng công thức, ta có: 62180 2.sin2.sin15 122 R ABaRR (Xem bài 4.3 có 62 sin15 4 )
Ví dụ 4. Cho hình thang ABCD với BC song song với AD với các góc BAD và CDA là các góc nhọn. Hai đường chéo AC và BD cắt nhau tại I. Gọi P là điểm bất kì trên đoạn thẳng BC (P không trùng với B, C). Giả sử đường tròn ngoại tiếp tam giác BIP cắt đoạn thẳng PA tại M khác P và đường tròn ngoại tiếp tam giác CIP cắt đoạn thẳng PD tại N khác P. Gọi Q là giao điểm của đường thẳng BM và CN. Chứng minh rằng lục giác AMINDQ là lục giác nội tiếp. Giải Tìm cách giải. Để chứng minh đa giác nội tiếp ta có thể đưa về chứng minh các tứ giác nội tiếp. Cụ thể chứng minh lục giác AMINDQ là lục giác nội tiếp, ta chứng minh tứ giác AMID, DNIA, QMIN là các tứ giác nội tiếp. Trình bày lời giải BPIM là tứ giác nội tiếp nên BPMBIM mà BC // AD nên MADBPA . Suy ra MADBIM => Tứ giác AMID là tứ giác nội tiếp (1) Tương tự ta có tứ giác DNIA là tứ giác nội tiếp (2) Từ các tứ giác BMIP và CNIP nội tiếp Suy ra QMIBPICNI Tứ giác QMIN là tứ giác nội tiếp (3) Từ (1), (2) và (3) suy ra A, M, I, N, D, Q cùng thuộc một đường tròn hay lục giác AMINDQ là lục giác nội tiếp. B. Bài tập vận dụng 17.1. Cho hình thang ABCD (AB // CD) ngoại tiếp đường tròn (O). Tiếp điểm trên AB, CD theo thứ tự là E, F. Chứng minh rằng AC, BD, EF đồng quy. 17.2. Cho đường tròn (O; r) tiếp xúc với 4 cạnh của tứ giác ABCD. Gọi M là một điểm trong của tứ giác. Biết rằng diện tích tứ giác ABCD bằng 4. Chứng minh rằng có ít nhất một cạnh của tứ giác mà khoảng cách từ M tới cạnh đó không lớn hơn 1. 17.3. Tam giác ABC có đường tròn tiếp xúc với hai cạnh AB, AC và với hai trung tuyến BM và CN. Chứng minh ABCΔ cân tại A. 17.4. Tứ giác ABCD ngoại tiếp đường tròn (O), đồng thời nội tiếp một đường tròn khác AB = 14cm, BC = 18cm, CD = 26cm. Gọi H là tiếp điểm của CD và đường tròn (O). Tính các độ dài HC, HD. 17.5. Cho ngũ giác ABCDE nội tiếp đường tròn (O). Gọi a, b, c lần lượt là khoảng cách từ điểm E đến các đường thẳng AB, BC và CD. Tính khoảng cách từ E đến đường thẳng AD theo a, b và c. 17.6. Cho tứ giác ABCD ngoại tiếp một đường tròn. Chứng minh rằng nếu một đường thẳng chia tứ giác thành hai phần có diện tích bằng nhau và chu vi bằng nhau thì đường thẳng đó đi qua tâm của đường tròn đó. 17.7. Cho đường tròn tâm O nội tiếp trong hình thang ABCD (AB // CD) tiếp xúc với cạnh AB tại E với cạnh CD tại F. a) Chứng minh BEDF AECF . b) Cho biết ,,2.ABaCBbabBEAE . Tính diện tích hình thang ABCD. (Tuyển sinh 10, THPT chuyên ĐHKHTN Hà Nội, năm học 2000-2001) 17.8. Cho đường tròn tâm O và một điểm P nằm ở bên trong đường tròn đó. Qua P ta kẻ hai dây cung AB và CD vuông góc với nhau. 1. Chứng minh rằng: a) ..PAPBPCPD ; b) Tổng 2222PAPBPCPD có giá trị không thay đổi với bất cứ vị trí nào của điểm P nằm ở bên trong đường tròn đã cho.