PDF Google Drive Downloader v1.1


Báo lỗi sự cố

Nội dung text 7. P2C7 Physical Optics-2024_With Solve_Riody_26.04.25.pdf

†f.Z Av‡jvKweÁvb  Final Revision Batch 1 mßg Aa ̈vq †f.Z Av‡jvKweÁvb Physical Optics Topicwise CQ Trend Analysis UwcK 2016 2017 2018 2019 2021 2022 2023 2024 †gvU Av‡jvi e ̈wZPvi: aviYv, Bqs Gi wØ wPo cixÿv 2 Ñ 1 4 9 21 16 53 Av‡jvi AceZ©b Ñ 1 Ñ 1 Ñ 6 Ñ 8 AceZ©b †MÖwUs Ñ Ñ Ñ 1 Ñ Ñ Ñ 1 Av‡jvi mgeZ©b Ñ Ñ Ñ Ñ Ñ 3 Ñ 3 * we.`a.: 2020 mv‡j GBPGmwm cixÿv AbywôZ nqwb| weMZ mv‡j †ev‡W© Avmv m„Rbkxj cÖkœ 1| evqy‡Z Bqs Gi wØwPo cixÿvq `ywU wP‡oi ga ̈eZx© `~iZ¡ 0.4 mm Ges wPo n‡Z c`©vi `~iZ¡ 1m| †K›`axq D3⁄4¡j †Wviv n‡Z 12 Zg D3⁄4¡j †Wvivi `~iZ¡ 9.3 mm cieZ©x‡Z cixÿYwU cvwb‡Z m¤úbœ Kiv n‡jv| cvwbi cÖwZmivsK 4 3 | [e. †ev. 24] (K) mgeZ©b Kv‡K e‡j? (L) c‡qw›Us †f±i e ̈vL ̈v Ki| (M) evqy‡Z e ̈eüZ Av‡jvi Zi1⁄2‣`N© ̈ wbY©q Ki| [Abyiƒc P. †ev. 24 (M)] (N) cvwb‡Z †K›`axq D3⁄4¡j †Wviv n‡Z 9.3 mm `~i‡Z¡ D3⁄4¡j †Wvivi msL ̈vi cwieZ©b n‡e wKÑ bv hvPvB Ki| mgvavb: Avgiv Rvwb, xn = nD a   = axn nD   = 0.4  10–3  9.3  10–3 12  1   = 3.1  10–7 m  evZv‡mi Zi1⁄2‣`N© ̈, a = 310 nm Avgiv Rvwb, w a = ca cw = a w  4 3 = 310 w  w = 232.5 nm awi, cvwb‡Z †K›`axq D3⁄4¡j †Wviv †_‡K n Zg D3⁄4¡j †Wvivi `~iZ¡ 9.3 mm| xn = nwD a  n = axn wD = 0.4  10–3  9.3  10–3 232.5  10–9  1 = 16 myZivs, cvwb‡Z †K›`axq D3⁄4¡j †Wviv †_‡K 16 Zg D3⁄4¡j †Wvivi `~iZ¡ 9.3 mm| A_©vr †Wvivi msL ̈v cwiewZ©Z n‡e| (Ans.) 2| wP‡Î †K›`axq Pig we›`yO n‡Z 4_© Pig we›`y P Gi `~iZ¡ 6 mm| [P. †ev. 24] A 1 m B 0.04 mm 6 mm O †K›`axq Pig we›`y P (K) †MawUs aaæeK Kv‡K e‡j? (L) `kv cv_©K ̈ c_ cv_©‡K ̈i 2  ̧Y e ̈vL ̈v Ki| (M) DÏxc‡K e ̈eüZ Av‡jvi Zi1⁄2 •`N© ̈ wbY©q Ki| mgvavb: Avgiv Rvwb, xn = nD a   = axn nD = 6  10–3  0.04  10–3 4  1 m = 6  10–8 m = 600 A° (Ans.) (N) DÏxc‡Ki wPiØq n‡Z c`©vi `~iZ¡ A‡a©K Kiv n‡j, †Wvivi e ̈eavb eZ©gvb †Wvivi cÖ‡ ̄ i mgvb n‡e wK bv? MvwYwZKfv‡e we‡kølY Ki| mgvavb: Avgiv Rvwb, †Wviv cÖ ̄’,  = D 2a = 6  10–8  1 2  0.04  10–3 = 7.5  10–4 m wPiØq n‡Z c`©vi `~iZ¡ A‡a©K Kivi ci †Wviv e ̈eavb, x = D2 a = D1 2a = 6  10–8  1 2  0.04  10–3 = 7.5  10–4 m myZivs wPoØq n‡Z c`©vi `~iZ¡ A‡a©K Kiv n‡j †Wviv e ̈eavb eZ©gvb †Wviv cÖ‡ ̄’i mgvb n‡e| (Ans.) 3| Av‡jvi e ̈wZPvi cixÿv Kivi Rb ̈ QvÎiv `ywU mymsMZ Drm e ̈envi Kij| Drm n‡Z wbM©Z Av‡jvi Zi1⁄2‣`N ̈© 4500 A| Drm n‡Z c`©vi `~iZ¡ 1 m Ges †Wvivi cÖš’ 5 mm| [Kz. †ev. 24] (K) c‡qw›Us †f±i Kv‡K e‡j? (L) e ̈wZPvi cixÿvq mymsMZ Av‡jvi Drm e ̈envi Kiv nq †Kb? e ̈vL ̈v Ki| (M) D3 Drm n‡Z wbM©Z †dvU‡bi kw3 wnmve Ki| mgvavb: Avgiv Rvwb, †dvU‡bi kw3, E = hc  = 6.63  10–34  3  108 4500  10–10 = 4.42  10–19 J (Ans.)
2  HSC Physics 2nd Paper Chapter-7 (N) c`©vi †K›`a n‡Z 6.38 mm `~‡i †Kvb ai‡bi †Wviv m„wó n‡e Zvi MvwYwZK we‡kølY `vI| mgvavb: wPo؇qi ga ̈eZ©x `~iZ¡ a n‡j, †Wviv cÖ ̄’,  = D 2a  a = D 2 = 4500  10–10  1 2  5  10–3 = 4.5  10–5 m c`©vi †K›`a †_‡K 6.38 mm `~‡i n μ‡gi D3⁄4¡j †Wviv m„wó n‡j, xn = nD a  6.38  10–3 = n  4500  10–10  1 4.5  10–5  n (hv m¤¢e bq) Avevi, c`©vi †K›`a †_‡K 6.38 mm `~‡i n μ‡gi AÜKvi †Wviv m„wó n‡j, xn = (2n – 1) D 2a  2n – 1 = 2axn D  2n – 1 = 2  4.5  10–5  6.38  10–3 4500  10–10  1  2n – 1 = 1.276  n = 1.138 1 myZivs, c`©vi †K›`a †_‡K 6.38 mm `~‡i cÖ_g AÜKvi †Wviv m„wó n‡e| (Ans.) 4| S1 S2 P O c`©v (†K›`axq D3⁄4j †Wviv) c`v_©weÁvb M‡elYvMv‡i Bq-Gi wØ-wPo cixÿvwU m¤úbœ Ki‡Z 2.95 mm e ̈eav‡bi wPoØq †_‡K 1 m `~‡i ̄’vcb Kiv nj| P we›`y‡Z m„ó †Wvivi †ÿ‡Î e ̈eüZ Av‡jvi Zi1⁄2‣`N© ̈ wQj 5900 A  Ges Zi1⁄2؇qi c_ cv_©K ̈ cvIqv †Mj 2.36  10–6 m| [Xv. †ev. 24] (K) mymsMZ Drm Kx? (L) m~h© †_‡K AvMZ Zi1⁄2gy‡Li cÖK...wZ Kxiƒc n‡e? e ̈vL ̈v K‡iv| (M) DÏxc‡K c`©vq m„ó †Wvivi e ̈eavb wbY©q Ki| mgvavb: Avgiv Rvwb, †Wviv e ̈eavb, x = D a = 5900  10–10  1 2.95  10–3 = 2  10–4 m (Ans.) †`Iqv Av‡Q, wPo؇qi e ̈eavb, a = 2.95 mm Zi1⁄2‣`N© ̈,  = 5900 A  wPo n‡Z c`©vi `~iZ¡, d = 1 m (N) P we›`y‡Z Kx ai‡bi e ̈wZPvi m„wó n‡e? MvwYwZKfv‡e we‡kølY Ki| mgvavb: Avgiv Rvwb, `kv cv_©K ̈,  = 2   x = 2  2.36  10–6 5900  10–10 = 8 MVbg~jK e ̈wZPv‡ii †ÿ‡Î, `kv cv_©K ̈ = 2n [n = 0, 1, 2........] = 0, 2, 4, 6 ......... A_©vr, `kv cv_©K ̈ -Gi †Rvo ̧wYZK n‡j MVbg~jK e ̈wZPvi cvIqv hv‡e| G‡ÿ‡Î,  = 8 nIqvq (-Gi †Rvo ̧wYZK), P we›`y‡Z MVbg~jK e ̈wZPvi m„wó n‡e| (Ans.) 5| Bqs Gi wØ-wPo cixÿvq wPo؇qi ga ̈eZ©x `~iZ¡ 0.04 mm Ges wPo n‡Z c`©vi `~iZ¡ 1.2 m| e ̈eüZ Av‡jvi Zi1⁄2‣`N© ̈ 3800 A  | †K›`axq D3⁄4¡j we›`y Dfq cv‡k 9.12 mm ch©šÍ Av‡jvi we ̄Í...wZ cvIqv hvq| [GKwU wP‡oi cÖ ̄’ 0.1 mm] [w`. †ev. 24] (K) AšÍt ̄ kw3 Kx? (L) UavbwR÷‡ii †em cvZjv Kiv nq †Kb? e ̈vL ̈v Ki| (M) †K›`axq D3⁄4¡j we›`yi †h‡Kv‡bv GK cv‡k m‡e©v”P KZμg D3⁄4¡j we›`y cvIqv hv‡e? wbY©q Ki| mgvavb: awi, †K›`axq D3⁄4¡j we›`yi †h‡Kv‡bv GKcv‡k m‡e©v”P n μ‡gi D3⁄4¡j †Wviv cvIqv hv‡e|  xn = nD a  9.12  10–3 = n  3800  10–10  1.2 0.4  10–3  n = 9.12  10–3  0.4  10–3 3800  10–10  1.2  n = 8 (Ans.) (N) DÏxc‡Ki wØ-wPo Gi cwie‡Z© GKK wP‡oi cixÿ‡Y cÂg μg Pi‡gi †ÿ‡Î †K.wYK miY GKB n‡e wK bvÑ we‡kølY Ki| mgvavb: wØ-wP‡oi †ÿ‡Î, asin1 = n  1 = sin–1     n a = sin–1     5  3800  10–10 0.4  10–3  1 = 0.272 GKK wP‡oi †ÿ‡Î, asin2 = (2n + 1) 2  2 = sin–1     11 2  3800  10–10 0.1  10–3  2 = 1.19  1  2 myZivs, DÏxc‡Ki wØwP‡oi cwie‡Z© GKK wP‡oi cixÿ‡Y cÂg μg Pi‡gi †ÿ‡Î †K.wYK miY GKB n‡e bv| (Ans.) 6| GKwU mgZj AceZ©b †MÖwUs G wPo Ges `v‡Mi cÖ ̄’ h_vμ‡g 1  10–6 m I 1.5  10–6 m| †MÖwUswUi Dci 5500 A  Zi1⁄2‣`‡N© ̈i Av‡jv Øviv Av‡jvwKZ Kiv n‡jv| [h. †ev. 24] (K) MVbg~jK e ̈wZPvi Kv‡K e‡j? (L) Bqs Gi wØ-wPo cixÿvq wPo؇qi e ̈eavb ̄^í nIqv cÖ‡qvRb †Kb? e ̈vL ̈v K‡iv| (M) GKK •`N© ̈ wP‡oi msL ̈v wbY©q K‡iv| [h. †ev. 24] mgvavb: Avgiv Rvwb, GKK •`N© ̈ wP‡oi msL ̈v, N = 1 d = 1 a + b = 1 1  10–6 + 1.5  10–6 = 1 2.5  10–6 = 4  105 m –1 (Ans.)
†f.Z Av‡jvKweÁvb  Final Revision Batch 3 (N) DÏxc‡Ki †MÖwUs †_‡K 5g μ‡gi D3⁄4¡j cwÆ cvIqv hv‡e wK bv? MvwYwZK we‡kølYmn hvPvB Ki| mgvavb: awi, m‡e©v”P n μ‡gi D3⁄4¡j cwÆ cvIqv hv‡e| m‡e©v”P μ‡gi Rb ̈ sin = 1  d  1 = n  n = d  n = d   n = 2.5  10–6 5500  10–10  n = 4.54 < 5 myZivs 5g μ‡gi D3⁄4¡j cwÆ m¤¢e bq| (Ans.) 7| wbw`©ó Zi1⁄2‣`‡N© ̈i Av‡jv w`‡q 6  10–3 mm cÖ‡ ̄’i wPo Av‡jvwKZ K‡i AceZ©b m„wó Kiv n‡jv| d‡j †K›`axq Pi‡gi Dfq cv‡k Z...Zxq μ‡gi Aeg ̧‡jvi ga ̈eZ©x †K.wYK `~iZ¡ 34.26 cvIqv †Mj| †jÝ †_‡K c`©vi `~iZ¡ 150 cm| [g. †ev. 24] (K) Av‡jvi mgeZ©b Kv‡K e‡j? (L) e ̈wZPv‡i mymsMZ Drm e ̈envi Kiv nq †Kb? e ̈vL ̈v Ki| (M) DÏx‡Ki Av‡jvi Zi1⁄2‣`N© ̈ †ei Ki| mgvavb: Z...Zxq μ‡gi Rb ̈ AceZ©b †KvY,  = 34.26 2 = 17.13 Avgiv Rvwb, Ae‡gi Rb ̈, asin = n   = asin n   = 6  10–6  sin17.13 3   = 5.89  10–7 m = 589 nm (Ans.) (N) DÏxc‡K wP‡o 6000 A  Zi1⁄2‣`‡N© ̈i Av‡jv †dj‡j †K›`axq Pi‡gi Dfq cv‡k wØZxq μ‡gi Aeg I Pi‡gi •iwLK `~i‡Z¡i cv_©K ̈ Ges Z...Zxq μ‡gi Aeg I Pi‡gi •iwLK `~i‡Z¡i cv_©K ̈ GKB n‡e wKbv? MvwYwZKfv‡e we‡kølY Ki| mgvavb: awi, †K›`axq Pi‡gi GKB cv‡k 2q μg Aeg I Pi‡gi †K.wYK `~iZ¡ h_vμ‡g, 1 I 2| B (2q Pig) A (2q Aeg) S O D 1 2  asin1 = n  1 = sin–1     n a = sin–1     2  6000  10–10 6  10–6 = 11.537 Ges asin2 = (2n + 1) 2  2 = sin–1       (2n + 1)  2a = sin–1      (4 + 1)  6000  10  –10 2  6  10–6 = 14.478  †K›`axq Pig †_‡K 2q Pig I 2q Ae‡gi •iwLK `~i‡Z¡i cv_©K ̈, AB = OB – OA = Dtan2 – Dtan1 = 1.5(tan14.478 – tan11.537) = 0.0811 m Abyiƒcfv‡e, awi, †K›`axq Pi‡gi GKB cv‡k 3q μg Aeg I Pi‡gi †K.wYK `~iZ¡ h_vμ‡g,  1 I  2 |  2 1 = 34.26   1 = 17.13 Ges asin 2 = (2n + 1) 2 B (3q Pig) A (3q Aeg) S O D 1 2   2 = sin–1       (2n + 1)  2a = sin–1      (6 + 1)  6000  10  –10 2  6  10–6 = 20.487  †K›`axq Pig †_‡K 2q Pig I 2q Ae‡gi •iwLK `~i‡Z¡i cv_©K ̈ AB = OB – OA = Dtan 2 – Dtan 1 = 1.5(tan20.487 – tan17.13) = 0.0981 m  AB  AB myZivs †K›`axq Pi‡gi Dfqcv‡kB 2q μ‡gi Pig I Ae‡gi •iwLK `~i‡Z¡i cv_©K ̈ Ges 3q μ‡gi Pig I Ae‡gi •iwLK `~i‡Z¡i cv_©K ̈ mgvb n‡e bv| (Ans.) 8| GKRb cixÿv_x© mgZj AceZ©b †MÖwUs e ̈envi K‡i Av‡ji AceZ©b ch©‡eÿY KiwQj| AceZ©b †MÖwUs Gi wP‡oi I `v‡Mi †ea h_vμ‡g 0.005 mm Ges 0.001 mm| e ̈en«Z Av‡jvi Zi1⁄2 •`N ̈© 4000A | c`v©q †K›`axq Pi‡gi Dfqcv‡k †M.Y Pig †`L‡Z cvq| [iv. †ev. 24] (K) Av‡jvi mym1⁄2Z Drm Kv‡K e‡j? (L) †Wvwcs Kxfv‡e Aa©cwievnxi Zwor cwievwnZv‡K cevweZ K‡i? e ̈vL ̈v Ki| (M) cÖ_g μ‡gi D3⁄4¡j †iLvi Rb ̈ AceZ©b †KvY wbY©q Ki| mgvavb: Avgiv Rvwb, dsin = n  sin = n d  sin = n a + b  sin = 1  4000  10–10 (0.005 + 0.001)  10–3   = 3.82 (Ans.) (N) DÏxcK Abymv‡i 6ô Ae‡gi Rb ̈ AceZ©b m¤¢e wKÑbv? MvwYwZKfv‡e e ̈vL ̈v Ki| mgvavb: awi, m‡e©v”P n μ‡gi D3⁄4¡j cwÆ cvIqv hv‡e| m‡e©v”P μ‡gi Rb ̈ sin = 1 d  1 = n  n = d  n = d  = (0.005 + 0.001)  10–3 4  10–7  n = 15 > 6 myZivs, 6ô Aeg Gi Rb ̈ AceZ©b m¤¢e| (Ans.)

Tài liệu liên quan

x
Báo cáo lỗi download
Nội dung báo cáo



Chất lượng file Download bị lỗi:
Họ tên:
Email:
Bình luận
Trong quá trình tải gặp lỗi, sự cố,.. hoặc có thắc mắc gì vui lòng để lại bình luận dưới đây. Xin cảm ơn.