PDF Google Drive Downloader v1.1


Báo lỗi sự cố

Nội dung text 4 bài - Khảo sát và vẽ đồ thị hàm số phân thức hữu tỉ bậc nhất trên bậc nhất.docx

Dạng 2: Khảo sát và vẽ đồ thị hàm số phân thức hữu tỉ bậc 1 / bậc 1 Để khảo sát hàm số axbyfx cxd    thì ta thực hiện theo các bước sau:  Bước 1: Tìm tập xác định của hàm số: \d D c   ℝ  Bước 2: Khảo sát sự biến thiên của hàm số  Tính đạo hàm 2 adbc y cxd     Tìm các giới hạn tại vô cực, giới hạn vô cực và tìm các đường tiệm cận của đồ thị hàm số  Lập bảng biến thiên, xác định chiều biến thiên và các điểm cực trị của hàm số  Bước 3: Cho thêm điểm và vẽ đồ thị hàm số dựa vào bảng biến thiên Câu trắc nghiệm đúng sai. Trong mỗi ý a), b), c), d) ở mỗi câu, thí sinh chọn đúng hoặc sai. Câu 1: Cho hàm số xa y bxc    với ,,abcℤ có đồ thị như hình vẽ dưới đây: a) Đồ thị hàm số có tiệm cận đứng 1x b) Đồ thị hàm số có tiệm cận ngang 0y c) Hàm số đồng biến trên ℝ d) 323Tabc Câu 2: Cho hàm số 1axfx bxc    với ,,abcℝ có bảng biến thiên như hình vẽ dưới đây: a) Hàm số nghịch biến trên khoảng 1 ; 2    
b) Đồ thị hàm số có tiệm cận đứng 1 2x c) Đồ thị giao với trục hoành tại điểm có hoành độ nhỏ hơn 3 d) 2 3 0 b b       Câu 3: Cho hàm số axbfx cxd    với ,,,abcdℝ có đồ thị hàm số yfx nhận 1x làm tiệm cận đứng như hình vẽ bên. Biết rằng giá trị lớn nhất của hàm số yfx trên đoạn 3;2 bằng 8 a) 03f b) Hàm số yfx nghịch biến trên khoảng 1; c) Giá trị của 3f bằng 8 d) Giá trị của 2f bằng 4 Câu 4: Cho hầm số 1 2 mx y xm    có đồ thị là mC với m là tham số a) Khi 2m thì đồ thị hàm số có đường tiệm cận ngang 1y b) Khi 2m thì giao điểm của các đường tiệm cận có toạ độ 1;1I c) Đường tiệm cận đứng của đồ thị hàm số đi qua điểm 1;2A thì 2m d) Với mọi giá trị của tham số m thì hàm số luôn đồng biến trên mỗi khoảng xác định của nó
Câu trắc nghiệm đúng sai. Trong mỗi ý a), b), c), d) ở mỗi câu, thí sinh chọn đúng hoặc sai. Câu 1: Cho hàm số xa y bxc    với ,,abcℤ có đồ thị như hình vẽ dưới đây: a) Đồ thị hàm số có tiệm cận đứng 1x b) Đồ thị hàm số có tiệm cận ngang 0y c) Hàm số đồng biến trên ℝ d) 323Tabc Lời giải a) Đúng: Đồ thị hàm số có tiệm cận đứng 1x b) Đúng: Đồ thị hàm số có tiệm cận ngang 0y c) Sai: Hàm số đồng biến trên các khoảng ;1 và 1; d) Đúng: Đồ thị hàm số có tiệm cận ngang 1y nên 1 11b b Đồ thị hàm số có tiệm cận đứng 1x nên 1c b mà 11bc Đồ thị hàm số cắt trục tung tại điểm 0;2 nên 2a c mà 12ca Vậy 3223.12.13Tabc . Câu 2: Cho hàm số 1axfx bxc    với ,,abcℝ có bảng biến thiên như hình vẽ dưới đây: a) Hàm số nghịch biến trên khoảng 1 ; 2    

Tài liệu liên quan

x
Báo cáo lỗi download
Nội dung báo cáo



Chất lượng file Download bị lỗi:
Họ tên:
Email:
Bình luận
Trong quá trình tải gặp lỗi, sự cố,.. hoặc có thắc mắc gì vui lòng để lại bình luận dưới đây. Xin cảm ơn.