Nội dung text Đề 07_Đề ôn tập giữa học kỳ II năm 2025 (File word giải chi tiết).pdf
Câu 7: Tính thể tích khối tròn xoay khi cho hình phẳng giới hạn bởi đồ thị hàm số 2 y x = ; trụcOx và các đường thẳng x x = = 1; 3 quay quanh trục Ox là: A. 242 5 V = . B. 26 3 V = . C. 26 3 V p = . D. 242 5 V p = . Câu 8: Trong không gian Oxyz , cho mặt phẳng P x y z : 2 3 5 4 0 + + - = và mặt phẳng Q P ∥ . Vectơ nào sau đây là một vectơ pháp tuyến của mặt phẳng Q . A. 2;3; 5- . B. 2; 3; 5 - - . C. - - 4; 6;10 . D. 4;6;10 . Câu 9: Trong không gian Oxyz , viết phương trình tổng quát của mặt phẳng P biết P chứa trục Ox và P đi qua điểm M 1;1;2 . A. x y - = 0 . B. x y z + - = 0. C. 2 0 x z - = . D. 2 0 y z - = . Câu 10: Trong không gian Oxyz , cho điểm M 1;0; 1- và mặt phẳng a qua M và chứa trục Ox có phương trình là A. y = 0 . B. x = 0 . C. z = 0 . D. x z + = 0 . Câu 11: Trong không gian Oxyz , cho đường thẳng 2 2 : 1 x t d y t z t ì = + ï í = - ï î = + . Một vecto chỉ phương của đường thẳng d là A. u = - 2; 1;1 uur . B. u = 2;0;1 uur . C. u = 2;1;1 uur . D. u = - 2;1; 1 uur . Câu 12: Trong không gian Oxyz , phương trình đường thẳng đi qua hai điểm A B 1;2;3 , 5;4; 1 - là A. 1 2 3 . 4 2 4 x y z - - - = = B. 5 4 1 . 2 1 2 x y z - - + = = - C. 5 4 1 . 2 1 2 x y z + + - = = - - D. 1 2 3 . 4 2 4 x y z + + + = = - PHẦN II. Thí sinh trả lời từ câu 1 đến câu 4. Trong mỗi ý a), b), c), d) ở mỗi câu, thí sinh chọn đúng hoặc sai. Câu 1: Cho hàm số f x x = cos và F x là họ nguyên hàm của hàm số f x . a) F x x = sin . b) 2 0 cos d 1 x x p = ò . c) Gọi S là diện tích hình phẳng giới hạn bởi y f x x = = cos , trục hoành và hai đường thẳng x x = = 0; p . Khi đó S =1. d) Gọi V là thể tích của khối tròn xoay tạo thành khi quay xung quanh trục hoành hình phẳng giới hạn bởi y f x x = = cos , y = 0 , x x = = 0; p . Khi đó 2 2 V p = . Câu 2: Cây cà chua khi trồng có chiều cao 5cm. Tốc độ tăng chiều cao của cây cà chua sau khi trồng được cho bởi hàm số 3 2 v t t t = - + 0,1 , trong đó * t Î¥ tính theo tuần, v t tính bằng centimét / tuần. Gọi h t (tính bằng centimét) là độ cao của cây cà chua ở tuần thứ t .
a) 4 3 40 3 t t h t - = + , với t 3 0 . b) Giai đoạn tăng trưởng của cây cà chua đó kéo dài trong 9 tuần. c) Chiều cao tối đa của cây cà chua đó là 88, 4 cm (Làm tròn kết quả đến hàng phần mười). d) Vào thời điểm cây cà chua đó phát triển nhanh nhất thì chiều cao cây cà chua đạt 54, 4 cm (kết quả được làm tròn đến hàng phần mười). Câu 3: Cho đường tròn C tâm O bán kính bằng 2, cắt trục hoành tại hai điểm A B, . Parabol P đi qua hai điểm A B, và có tọa độ đỉnh I 0;1 . a) Diện tích hình phẳng giới hạn bởi đồ thị hàm số y f x y g x = = , và hai đường thẳng x a x b a b = = < , là d b a S f x g x x = - ò . b) Diện tích hình phẳng giới hạn bởi đường tròn C, parabol P bằng b a c p - với a b c , , là các số tự nhiên, b c là phân số tối giản. Khi đó a b c + + = 9 . c) Thể tích vật thể khi xoay hình phẳng giới hạn bởi parabol P , trục hoành, hai đường thẳng x x = - = 2; 2 bằng m n p với m n, là số tự nhiên, m n là phân số tối giản. Khi đó m n - = 7 . d) Từ một quả cầu bằng đá trắng sứ bán kính bằng 2 dm, người ta khoan rút lõi ngay “chính giữa” quả cầu (trục đối xứng của lõi và quả cầu trùng nhau) như hình sau với đường kính mũi khoan là 2 dm được một vật thể có thể tích 32 12 3 6 V p - = (bỏ qua độ dày mũi khoan). Câu 4: Trong không gian với hệ tọa độ Oxyz , cho ba điểm A2;1;3,B3;0;2, C0; 2;1 - . a) Tọa độ các vecto AB AC = - - = - - - 1; 1; 1 , 2; 3; 2 uuur uuur b) Phương trình mặt phẳng ABC là: x y z - + - = 4 5 13 0 . c) Khoảng cách từ điểm A đến mặt phẳng trung trực của đoạn thẳng BC bằng 17 4 . d) Mặt phẳng P đi qua A B, và cách C một khoảng lớn nhất có phương trình 3 2 11 0 x y z + + - = PHẦN III. Thí sinh trả lời từ câu 1 đến câu 6 Câu 1: Cho F x là một nguyên hàm của hàm số 2 3 x f x x e = - trên ¡ thỏa mãn F 0 3 = . Giá trị của F 1 bằng bao nhiêu?( Kết quả làm tròn đến phần hàng trăm).