PDF Google Drive Downloader v1.1


Báo lỗi sự cố

Nội dung text C1-B1-TÍNH ĐƠN ĐIỆU và CỰC TRỊ CỦA HÀM SỐ-P1.docx


ỨNG DỤNG ĐẠO HÀM Chương 01 Trang 2» TOÁN TỪ TÂM 3. Khái niệm cực trị của hàm số Định nghĩa: Cho hàm số xác định và liên tục trên khoảng ( có thể là có thể là ) và điểm .  sao cho với mọi và thì ta nói hàm số đạt cực đại tại .  sao cho với mọi và thì ta nói hàm số đạt cực tiểu tại . » Hàm số đạt cực đại tại thì được gọi là điểm cực đại của hàm số . Khi đó, được gọi là giá trị cực đại của hàm số và kí hiệu là hay . Điểm được gọi là điểm cực đại của đồ thị hàm số. » Hàm số đạt cực tiểu tại thì được gọi là điểm cực tiểu của hàm số . Khi đó, được gọi là giá trị cực tiểu của hàm số và kí hiệu là hay . Điểm được gọi là điểm cực tiểu của đồ thị hàm số. » Các điểm cực đại và điểm cực tiểu được gọi chung là điểm cực trị. Giá trị cực đại và giá trị cực tiểu được gọi chung là giá trị cực trị (cực trị) của hàm số. Chú ý 4. Cách tìm cực trị của hàm số Định lý: Giả sử hàm số liên tục trên khoảng chứa điểm và có đạo hàm trên các khoảng và . Khi đó:  Nếu với mọi và với mọi thì là một điểm cực tiểu của hàm số .  Nếu với mọi và với mọi thì là một điểm cực đại của hàm số . » Định lí trên được viết gọn lại trong hai bảng biến thiên sau:
ỨNG DỤNG ĐẠO HÀM Chương 01 Trang 3» TOÁN TỪ TÂM » Từ định lí trên ta có các bước tìm cực trị của hàm số như sau: ⑴ Tìm tập xác định của hàm số. ⑵ Tính . Tìm các điểm mà tại đó bằng 0 hoặc không tồn tại. ⑶ Lập bảng biến thiên suy ra các cực trị của hàm số. » Nếu nhưng không đổi dấu khi qua thì không phải là điểm cực trị của hàm số. Chẳng hạn, hàm số có , nhưng không phải là điểm cực trị của hàm số. Chú ý

Tài liệu liên quan

x
Báo cáo lỗi download
Nội dung báo cáo



Chất lượng file Download bị lỗi:
Họ tên:
Email:
Bình luận
Trong quá trình tải gặp lỗi, sự cố,.. hoặc có thắc mắc gì vui lòng để lại bình luận dưới đây. Xin cảm ơn.