Nội dung text 40 DE THI TUYEN SINH VAO LOP 10.docx
1 ĐỀ SỐ 1 Câu 1: a) Cho biết a = 23 và b = 23 . Tính giá trị biểu thức: P = a + b – ab. b) Giải hệ phương trình: 3x + y = 5 x - 2y = - 3 . Câu 2: Cho biểu thức P = 11x : x - xx1x - 2x1 (với x > 0, x 1) a) Rút gọn biểu thức P. b) Tìm các giá trị của x để P > 1 2 . Câu 3: Cho phương trình: x 2 – 5x + m = 0 (m là tham số). a) Giải phương trình trên khi m = 6. b) Tìm m để phương trình trên có hai nghiệm x 1 , x 2 thỏa mãn: 12xx3 . Câu 4: Cho đường tròn tâm O đường kính AB. Vẽ dây cung CD vuông góc với AB tại I (I nằm giữa A và O ). Lấy điểm E trên cung nhỏ BC ( E khác B và C ), AE cắt CD tại F. Chứng minh: a) BEFI là tứ giác nội tiếp đường tròn. b) AE.AF = AC 2 . c) Khi E chạy trên cung nhỏ BC thì tâm đường tròn ngoại tiếp ∆CEF luôn thuộc một đường thẳng cố định. Câu 5: Cho hai số dương a, b thỏa mãn: a + b 22 . Tìm giá trị nhỏ nhất của biểu thức: P = 11 ab . ĐỀ SỐ 2 Câu 1: a) Rút gọn biểu thức: 11 3737 . b) Giải phương trình: x 2 – 7x + 3 = 0. Câu 2: a) Tìm tọa độ giao điểm của đường thẳng d: y = - x + 2 và Parabol (P): y = x 2 . b) Cho hệ phương trình: 4x + ay = b x - by = a . Tìm a và b để hệ đã cho có nghiệm duy nhất ( x;y ) = ( 2; - 1). Câu 3: Một xe lửa cần vận chuyển một lượng hàng. Người lái xe tính rằng nếu xếp mỗi toa 15 tấn hàng thì còn thừa lại 5 tấn, còn nếu xếp mỗi toa 16 tấn thì có thể chở thêm 3 tấn nữa. Hỏi xe lửa có mấy toa và phải chở bao nhiêu tấn hàng.
4 Câu 4: Cho đường tròn (O;R); AB và CD là hai đường kính khác nhau của đường tròn. Tiếp tuyến tại B của đường tròn (O;R) cắt các đường thẳng AC, AD thứ tự tại E và F. a) Chứng minh tứ giác ACBD là hình chữ nhật. b) Chứng minh ∆ACD ~ ∆CBE c) Chứng minh tứ giác CDFE nội tiếp được đường tròn. d) Gọi S, S 1 , S 2 thứ tự là diện tích của ∆AEF, ∆BCE và ∆BDF. Chứng minh: 12SSS . Câu 5: Giải phương trình: 3210x + 1 = 3x + 2 ĐỀ SỐ 6 Câu 1: Rút gọn các biểu thức sau: a) A = 3333 2.2 3131 b) B = ba - .ab - ba a - abab - b ( với a > 0, b > 0, a b) Câu 2: a) Giải hệ phương trình: x - y = - 1 1 23 + = 2 2 xy b) Gọi x 1 , x 2 là hai nghiệm của phương trình: x 2 – x – 3 = 0. Tính giá trị biểu thức: P = x 1 2 + x 2 2 . Câu 3: a) Biết đường thẳng y = ax + b đi qua điểm M ( 2; 1 2 ) và song song với đường thẳng 2x + y = 3. Tìm các hệ số a và b. b) Tính các kích thước của một hình chữ nhật có diện tích bằng 40 cm 2 , biết rằng nếu tăng mỗi kích thước thêm 3 cm thì diện tích tăng thêm 48 cm 2 . Câu 4: Cho tam giác ABC vuông tại A, M là một điểm thuộc cạnh AC (M khác A và C ). Đường tròn đường kính MC cắt BC tại N và cắt tia BM tại I. Chứng minh rằng: a) ABNM và ABCI là các tứ giác nội tiếp đường tròn. b) NM là tia phân giác của góc ANI . c) BM.BI + CM.CA = AB 2 + AC 2 . Câu 5: Cho biểu thức A = 2x - 2xy + y - 2x + 3 . Hỏi A có giá trị nhỏ nhất hay không? Vì sao? ĐỀ SỐ 7 Câu 1: a) Tìm điều kiện của x biểu thức sau có nghĩa: A = x - 1 + 3 - x