Nội dung text Polynomial Varsity Practice Sheet Solution.pdf
eûc`x I eûc`x mgxKiY Varsity Practice Sheet 1 04 eûc`x I eûc`x mgxKiY Polynomial and Polynomial Equation 1. wb‡Pi †KvbwU eûc`x bq? ax 2 + 2hxy + by2 2x2 + 3xy + y2 x 2 + y2 + 2gx + 2fg + c 2x2 + 3y x + y2 DËi: 2x2 + 3y x + y2 e ̈vL ̈v: KviY x Gi NvZ Negative 2. †KvbwU eûc`x? 2x2 – 5 x + 1 x 3 – 3 x 2 + 4x + 1 x 3 + 2x2 – 3x + x–1 2x2 – x + 1 DËi: 2x2 – x + 1 e ̈vL ̈v: eûc`x n‡Z n‡j Pj‡Ki NvZ c~Y©msL ̈v n‡Z n‡e, fMœvsk ev FYvZ¥K n‡j n‡e bv| 3. 4x3 + 2x2 + 3x – 6 †K x – 1 Øviv fvM Ki‡j fvM‡kl KZ n‡e? 1 3 –11 0 DËi: 3 e ̈vL ̈v: awi, f(x) = 4x3 + 2x2 + 3x – 6 f(1) = 4 + 2 + 3 – 6 = 3 4. x 3 – 9x2 + 24x – 15 †K x – 2 Øviv fvM Ki‡j fvM‡k‡lÑ 4 5 6 7 DËi: 5 e ̈vL ̈v: f(x) = x3 – 9x2 + 24x – 15 fvM‡kl f(2) = 23 – 9 (22 ) + 24 2 – 15 = 5 5. 2x3 + bx2 – 9x – 26 eûc`xi GKwU Drcv`K x – 2 n‡j, b Gi gvbÑ 1 3 5 7 DËi: 7 e ̈vL ̈v: f(x) = 2x3 + bx2 – 9x – 26 f(2) = 0 2.23 + b.22 – 9.2 – 26 = 0 b = 7 6. y = x 2 – 12x + 40 GB mgxKiY m¤ú‡K© †KvbwU mZ ̈? x Aÿ‡K GKUv we›`y‡Z †Q` K‡i x Aÿ‡K `yBUv we›`y‡Z †Q` K‡i x Aÿ‡K wZbUv we›`y‡Z †Q` K‡i x Aÿ‡K †Q`B K‡i bv DËi: x Aÿ‡K †Q`B K‡i bv e ̈vL ̈v: D = 144 – 4.40 < 0 ev ̄Íe g~j bvB| x Aÿ‡K †Q`B K‡i bv 7. y = x 3 mgxKiYwU x Aÿ‡K KqwU we›`y‡Z †Q` K‡i? 0 1 2 3 DËi: 1 e ̈vL ̈v: x 3 – 1 = 0 x 2 + x + 1 = 0 Gi ev, (x – 1) (x2 + x + 1) = 0 †Kv‡bv ev ̄Íe mgvavb †bB x 3 – 1 = 0 Gi ev ̄Íe mgvavb 1wU x Aÿ‡K 1wU we›`y‡Z †Q` Ki‡e| 8. y = x 4 + x3 – x 2 + 1 mgxKiYwU y Aÿ‡K KZevi †Q` Ki‡e? 0 1 2 4 DËi: 1 e ̈vL ̈v: y A‡ÿ, x = 0 y = 0 + 0 – 0 + 1 = 1 y Aÿ‡K (0, 1) we›`y‡Z GKevi †Q` K‡i| 9. y = x 2 – 3x – ix + 3i †iLvwU x Aÿ‡K †Kvb we›`y‡Z †Q` Ki‡e? 0, 3 3, 0 Awb‡Y©q †Q` Ki‡e bv DËi: 3, 0 e ̈vL ̈v: x A‡ÿ y = 0 x 2 – 3x – ix + 3i = 0 x (x – 3) – i (x – 3) = 0 x = 3, i x A‡ÿi †Q`we›`y (3, 0) 10. 3 x+5 = 3x+3 + 8 3 n‡j x = ? [RU 17-18] 1 –2 – 4 9 DËi: – 4 e ̈vL ̈v: 3 x .35 – 3 x .33 = 8 3 3 x+3(32 – 1) = 8 3 3 x+3 = 3–1 x = – 4 11. 5 2x – 24.5x – 25 = 0 GB mgxKi‡Yi g~j KqwU? 1wU 2wU 3wU 4wU DËi: 1wU
eûc`x I eûc`x mgxKiY Varsity Practice Sheet 3 22. x 2 – kx + k – 1 2 = 0 Gi g~jØq mgvb n‡j, k = ? 2 2 2 2 4 DËi: 2 2 e ̈vL ̈v: g~jØq mgvb n‡j, D = 0 k 2 – 4 k – 1 2 = 0 k 2 – 4k + 2 = 0 k = 4 16 – 8 2 = 2 2 23. k Gi gvb KZ n‡j, (k + 1) x2 + 2 (k + 3) x + 2k + 3 = 0 ivwkwU GKwU c~Y©eM© n‡e? – 2, – 3 – 2, 3 3, 2 2, 3 DËi: – 2, 3 e ̈vL ̈v: ivwkwU c~Y©eM© n‡j, wbðvqK = 0 4 (k2 + 6k + 9) – 4 (2k2 + 5k + 3) = 0 – 4k2 + 4k + 24 = 0 k 2 – k – 6 = 0 k 2 + 2k – 3k – 6 = 0 k = – 2, 3 24. x 2 + x + 1 = 2 Gi wbðvqK KZ? – 3 13 11 12 DËi: 13 e ̈vL ̈v: x 2 + x – 3 = 0 D = 1 + 12 = 13 25. 2 (a2 + b2 ) x2 + 2 (a + b) x + 1 = 0 GB mgxKi‡Yi g~jÑ ev ̄Íe I mgvb Aev ̄Íe ev ̄Íe I Amgvb None DËi: Aev ̄Íe e ̈vL ̈v: D = {2 (a + b)}2 – 4 2 (a2 + b2 ) 1 = – 4 (a – b)2 D < 0 ; Aev ̄Íe g~j 26. wØNvZ mgxKi‡Yi wbðvqK aYvZ¥K c~Y©eM© msL ̈v n‡j g~j ̧‡jv n‡eÑ Aev ̄Íe I g~j` ev ̄Íe I g~j` ev ̄Íe I Ag~j` Aev ̄Íe I Ag~j` DËi: ev ̄Íe I g~j` 27. a Gi †Kv‡bv gv‡bi Rb ̈ ax2 – x + 4 = 0 mgxKi‡Yi g~jØq mgvb n‡e? 1 16 – 1 16 1 4 – 1 4 DËi: 1 16 e ̈vL ̈v: D = (–1)2 – 4.a.4 = 1 – 16a 1 – 16a = 0 a = 1 16 28. 1 x + a – bx = 0 mgxKi‡Yi g~jØq mgvb †KvbwU mwVK? a 2 – 4b = 0 b 2 – 4a = 0 b 2 + 4a = 0 a 2 + 4b = 0 DËi: a 2 + 4b = 0 e ̈vL ̈v: 1 x + a – bx = 0 1 + ax – bx2 = 0 g~jØq, D = 0 a 2 – 4.1.(–b) = 0 a 2 + 4b = 0 29. ax2 + x + b = 0 Gi g~jØq mgvb n‡e hw`Ñ b 2 = 4a b 2 < 4a b 2 > 4a ab = 1 4 DËi: ab = 1 4 e ̈vL ̈v: D = 0 1 – 4ab = 0 ab = 1 4 30. x 2 – bx + 1 = 0 GB mgxKi‡Yi ev ̄Íe g~j _vK‡e bv hw`Ñ – 3 < b < 3 – 2 < b < 2 b > 2 b < – 2 DËi: – 2 < b < 2 e ̈vL ̈v: b 2 – 4 < 0 b 2 < 4 b < 2 – 2 < b < 2 31. ax2 – bx + b = 0 mgxKi‡Yi g~j ̧‡jv ev ̄Íe n‡e †Kvb k‡Z© hw` b Ak~b ̈ nqÑ b = 4a b 4a b 2 4ab a b 2 DËi: b 4a e ̈vL ̈v: b 2 – 4ab 0 b 2 4ab b 4a 32. – 2x2 + kx – 8 = 0 Gi g~j KvíwbK n‡e hLbÑ k = 8 k < 8 – 8 < k < 8 None DËi: – 8 < k < 8 e ̈vL ̈v: D = k2 – 64 < 0 – 8 < k < 8