Nội dung text Polynomials Engineering Practice Sheet Solution.pdf
eûc`x I eûc`x mgxKiY Engineering Practice Sheet Solution 1 04 eûc`x I eûc`x mgxKiY Polynomial and Polynomial Equation WRITTEN weMZ mv‡j BUET-G Avmv cÖkœvejx 1| ax2 + bx + c = 0 Gi 3b 3 + 3a2 c + 3ac2 = 9abc n‡j g~j؇qi m¤úK© †ei Ki| [BUET 23-24] mgvavb: awi, ax2 + bx + c = 0 mgxKi‡Yi g~jØq , + = – b a Ges = c a GLb, 3b3 + 3a2 c + 3ac2 = 9abc b 3 + a 2 c + ac2 = 3abc b 3 a 3 + c a + c 2 a 2 = 3 b a . c a – ( + ) 3 + + () 2 = – 3 ( + ) – 3 – 3 – 3 2 – 3 2 + + 2 2 = – 3 2 – 3 2 2 2 + – 3 – 3 = 0 2 ( 2 – ) – ( 2 – ) = 0 ( 2 – ) ( 2 – ) = 0 2 = A_ev, 2 = g~jØq G‡K Ac‡ii eM©| 2| x 4 – 9x3 + 30x 2 – 42x + 20 = 0 mgxKi‡Yi GKwU g~j (3 – i) n‡j mgxKiYwUi Aci wZbwU g~j †ei Ki| [BUET 21-22] mgvavb: Aci AbyeÜx RwUj g~jwU n‡e (3 + i) awi, Aci `ywU g~j , | GLb, + + (3 – i) + (3 + i) = 9 + + 6 = 9 + = 3 .................... (i) Ges (3 + i) (3 – i) = 20 (9 + 1) = 20 = 2 – = ( + ) 2 – 4 = 9 – 8 = 1 ......... (ii) (i) + (ii) 2 = 4 = 2 = 1 Aci wZbwU g~j n‡jv: 1, 2 Ges (3 + i) (Ans.) 3| ax2 + bx + c = 0 mgxKi‡Yi g~jØq , Ges bx2 + cx + a = 0 mgxKi‡Yi g~jØq , n‡j, †Kvb k‡Z© = n‡e †ei Ki| [BUET 18-19 ; MIST 18-19] mgvavb: ax2 + bx + c = 0 mgxKi‡Yi g~jØq , + = – b a , = c a Ges bx2 + cx + a = 0 mgxKi‡Yi g~jØq , + = – c b , = a b cÖkœg‡Z, = ( + ) 2 = ( + ) 2 – b a 2 c a = – c b 2 a b b 2 ca = c 2 ab b 3 = c3 [∵ a 0] (b – c) (b2 + bc + c2 ) = 0 b = c [∵ b 2 + bc + c2 0] wb‡Y©q kZ© b = c (Ans.) 4| `yRb Qv·K GKwU wØNvZ mgxKiY mgvavb Ki‡Z ejv nj| GKRb QvÎ mgxKi‡Yi x Gi mnMwU fzj wj‡L 2 Ges 6 GB exR `ywU †cj| Aci QvÎ aaæeK c`wU fz‡j wj‡L 2 Ges – 9 GB exR `ywU †cj| wbfz©j mgxKi‡Yi exR ̧wj wbY©q Ki| [BUET 16-17] mgvavb: 2 I 6 g~jwewkó mgxKiY: (x – 2) (x – 6) = 0 x 2 – 8x + 12 = 0 ; x Gi mnM fzj| Avevi, (x – 2) (x + 9) = 0 x 2 + 7x – 18 = 0 ; aaæeK c` fzj| wbfz©j mgxKiY: x 2 + 7x + 12 = 0 x = – 3, – 4 (Ans.) 5| x 3 – px2 – 14x – 24 = 0 x 2 – qx + 6 = 0 x 2 – 2x + r = 0 1g mgxKi‡Yi g~j ̧‡jv 2q I 3q mgxKi‡Yi g~j ̧‡jvi mgvb| p + q + r = ? [BUET 15-16; MIST 15-16] mgvavb: x 3 – px2 – 14x – 24 = 0 , , x 2 – qx + 6 = 0 , x 2 – 2x + r = 0 , + = q ; = 6 + = 2 ; = r + + = p ; = 24 = 24 6 = 4
2 Higher Math 2nd Paper Chapter-4 + + = – 14 6 + 4 ( + ) = – 14 + = – 5 q = – 5 + = 2 = – 2 = 6 = – 3 r = = (– 2) × 4 = – 8 p = + + = – 1 p + q + r = – 1 – 5 – 8 = – 14 6| ‘a’ Gi ev ̄Íe gvb KZ n‡j x 3 + 3ax2 + x + 1 = 0 mgxKi‡Yi g~j ̧‡jv mgvšÍi cÖMg‡b _vK‡e? mgxKiYwUi g~j ̧‡jvI wbY©q Ki| [BUET 14-15] mgvavb: awi, g~j ̧‡jv: ( – d), , ( + d) 3 = – 3a = – a ......... (i) Avevi, ( – d) () ( + d) = – 1 ( 2 – d 2 ) = – 1 2 – d 2 = – 1 ......... (ii) Avevi, ( – d) + .( + d) + 2 – d 2 = 1 2 2 + ( 2 – d 2 ) = 1 2 2 + – 1 = 1 2 3 – – 1 = 0 = 1 (i) bs n‡Z, a = – 1 (Ans.) (ii) n‡Z, 1 – d 2 = – 1 d = 2 g~j ̧‡jv 1 – 2 , 1, 1 + 2 (Ans.) 7| hw` x 3 – px2 – qx – r = 0 mgxKi‡Yi g~j ̧wj a, b, c nq Z‡e a 3 + b3 + c3 Gi gvb wbY©q Ki| [BUET 14-15] mgvavb: a + b + c = p ab + bc + ca = – q abc = r a 3 + b3 + c3 = (a + b + c) {(a + b + c)2 – 3(ab + bc + ca)} + 3abc = p{(p)2 – 3(– q)} + 3r = p(p2 + 3q) + 3r (Ans.) 8| hw` x 2 + px + q = 0, x2 + qx + 8p = 0 Ges 4x3 + 16x2 – 9x – 36 = 0 mgxKiY ̧‡jvi GKwU mvaviY g~j _v‡K Ges 4x3 + 16x2 – 9x – 36 = 0 mgxKi‡Yi Ab ̈ `yBwU g~‡ji †hvMdj k~b ̈ n‡j, p Ges q Gi gvb wbY©q Ki| [BUET 13-14] mgvavb: awi, 4x3 + 16x2 – 9x – 36 = 0 mgxKi‡Yi g~j ̧‡jv , – , – + = – 16 4 = – 4 = – 4 x 2 + px + q = 0 Ges x 2 + qx + 8p = 0 Gi mvaviY g~j, = – 4 16 – 4p + q = 0 ......... (i) 16 – 4q + 8p = 0 ......... (ii) (i) Ges (ii) bs mgxKiY mgvavb K‡i, p = 10; q = 24 (Ans.) 9| 2x2 + 3x + 5 = 0 mgxKi‡Yi g~jØq Ges n‡j 1 3Ges 1 3 g~jØq Øviv MwVZ mgxKiYwU wbY©q Ki| [BUET 05-06] mgvavb: + = – 3 2 , = 5 2 ; wb‡Y©q mgxKiY, x 2 – 1 3 + 1 3 x + 1 3 3 = 0 x 2 – ( + ) 3 – 3( + ) () 3 x + 1 3 3 = 0 x 2 – – 3 2 3 – 3 × 5 2 – 3 2 5 2 3 x + 1 5 2 3 = 0 wb‡Y©q mgxKiY: x 2 – 63 125 x + 8 125 = 0 125x2 – 63x + 8 = 0 (Ans.) 10| k Gi gvb KZ n‡j (k2 – 3)x2 + 3kx + (3k + 1) = 0 mgxKi‡Yi GKwU g~j Aci g~jwUi D‡ëv n‡e? AZtci mgxKi‡Yi g~j؇qi ag© wbY©q Ki| [BUET 04-05] mgvavb: g~jØq Dëv n‡j, k 2 – 3 = 3k + 1 k 2 – 3k – 4 = 0 k = 4, – 1 k = – 1 n‡j mgxKiYwU n‡e – 2x2 – 3x – 2 = 0 D = 32 – 4.2.2 = – 7 < 0 g~jØq AbyeÜx RwUj| Avevi, k = 4 n‡j mgxKiY n‡e 13x2 + 12x + 13 = 0 D = 122 – 4 13 13 = – 532 < 0 g~jØq AbyeÜx RwUj| 11| 27x2 + 6x – (p + 2) = 0 Gi GKwU g~j AciwUi e‡M©i mgvb n‡j p Gi gvb †ei Ki| [BUET 03-04] mgvavb: cÖ`Ë mgxKiY, 27x2 + 6x – (p + 2) = 0 mgxKi‡Yi GKwU g~j n‡j Aci g~j 2 ; AZGe, + 2 = – 6 27 27 2 + 27 + 6 = 0 = – 1 3 , – 2 3 Ges . 2 = – (p + 2) 27 3 = – (p + 2) 27 = – 1 3 n‡j, – 1 27 = – (p + 2) 27 p = – 1 Avevi, = – 2 3 n‡j, – 8 27 = – (p + 2) 27 p = 6 p = 6 A_ev – 1 (Ans.)
eûc`x I eûc`x mgxKiY Engineering Practice Sheet Solution 3 12| PZzN©vZ wewkó GKwU mgxKiY MVb Ki hvi `ywU g~j h_vμ‡g 2, 3 Ges evKx `ywU g~j x 2 + 4x + 5 = 0 GB mgxKi‡Yi g~j? [BUET 02-03] mgvavb: wb‡Y©q PZzN©vZ mgxKiYwU, (x – 2) (x – 3) (x2 + 4x + 5) = 0 (x2 – 5x + 6) (x2 + 4x + 5) = 0 x 4 – x 3 – 9x2 – x + 30 = 0 (Ans.) 13| hw` x 2 + px + q = 0 Ges x 2 + qx + p = 0 mgxKiY؇qi GKwU mvaviY g~j _v‡K Z‡e 2x2 + (p + q – 2)x = (p + q – 2)2 mgxKi‡Yi g~jØq wbY©q Ki| [BUET 02-03] mgvavb: awi, mvaviY g~j | 2 + p + q = 0 ......... (i) 2 + q + p = 0 .......... (ii) (i) – (ii) (p – q) + (q – p) = 0 = 1 1 + p + q = 0 p + q = –1 2x2 + (p + q – 2)x = (p + q – 2)2 2x2 – 3x = 9 x = 3, – 3 2 (Ans.) 14| hw` I Amgvb nq Ges 2 = 5 – 3 Ges 2 = 5 – 3 nq Z‡e Ges g~j wewkó mgxKiYwU wbY©q Ki| [BUET 00-01] mgvavb: cÖkœg‡Z, I , x 2 – 5x + 3 = 0 mgxKi‡Yi `ywU g~j + = 5, = 3 wb‡Y©q mgxKiY, x 2 – + x + = 0 x 2 – ( + ) 2 – 2 x + = 0 x 2 – 25 – 6 3 x + 1 = 0 3x2 – 19x + 3 = 0 (Ans.) weMZ mv‡j KUET-G Avmv cÖkœvejx 15| x 4 + 7x3 + 8x2 – 28x – 48 = 0 mgxKi‡Yi mKj g~j wbY©q Ki, hw` `ywU g~‡ji †hvMdj k~b ̈ nq| [KUET 19-20] mgvavb: awi, g~j ̧‡jv a, – a, b, c b + c = –7 ....... (i) Avevi, abc – abc – a 2 b – a 2 c = 28 – a 2 (b + c) = 28 a 2 = 28 7 = 4 a = 2 Avevi, – a 2 bc = – 48 bc = 12 b – c = (b + c) 2 – 4bc = 49 – 48 = 1 ...... (ii) (i) + (ii) 2b = – 6 b = – 3 c = – 4 g~j ̧‡jv nj 2, – 2, – 3, – 4 (Ans.) 16| hw` x 2 + 2bx + c = 0 mgxKi‡Yi g~jØq I nq, n‡e 2 I 2 g~j m¤^wjZ mgxKiYwU wbY©q Ki| I Gi gvb I wbY©q Ki| [KUET 06-07] mgvavb: + = – 2b = c 2 + 2 = ( + ) 2 – 2 = 4b2 – 2c 2 I 2 g~j wewkó mgxKiY x 2 – ( 2 + 2 )x + 2 2 = 0 x 2 – (4b2 – 2c)x + c2 = 0 x 2 – 2(2b2 – c)x + c2 = 0 – = ( + ) 2 – 4 = 4b2 – 4c = 2 b 2 – c = – b + b 2 – c (Ans.) = – b – b 2 – c (Ans.) 17| x 2 + bx + c = 0 mgxKi‡Yi g~j `ywU ev ̄Íe I Amgvb n‡j †`LvI †h, 2x2 – 4(1 + c)x + (b2 + 2c2 + 2) = 0 mgxKiYwUi g~j `ywU KvíwbK n‡e| [KUET 05-06] mgvavb: D1 = b2 – 4.c > 0 D2 = 42 (1 + c)2 – 4(b2 + 2c2 + 2) 2 = 16 + 32c + 16c2 – 8b2 – 16c2 – 16 = 32c – 8b2 = – 8(b2 – 4c) < 0 [∵ b 2 – 4c > 0] 2q mgxKiYwUi g~j `yBwU KvíwbK n‡e| (Showed) 18| 7x2 – 5x – 3 = 0 mgxKi‡Yi g~jØq , n‡j Giƒc Ges ALÛ mnMwewkó mgxKiY MVb Ki hvi g~j 1 + 3 , 3 + 1 n‡e| [KUET 04-05] mgvavb: GLv‡b, + = 5 7 = – 3 7 1 + 3 + 3 + 1 = 4 + = 4 5 7 – 3 7 = – 20 3
4 Higher Math 2nd Paper Chapter-4 1 + 3 3 + 1 = ( + 3) (3 + ) () 2 = 3 2 + + 9 + 3 2 () 2 = 3( + ) 2 + 4 () 2 = 3 25 49 – 3 7 4 9 49 = –1 mgxKiY, 3x2 + 20x – 3 = 0 (Ans.) weMZ mv‡j RUET-G Avmv cÖkœvejx 19| I , x 2 – bx – b = 0 Gi `yBwU g~j| 4 I 4 g~jØq wewkó mgxKiYwU †ei Ki| [RUET 18-19] mgvavb: + = b I = – b 2 + 2 = ( + ) 2 – 2 = b2 + 2b 4 + 4 = ( 2 + 2 ) 2 – 2() 2 = (b2 + 2b)2 – 2b2 = b4 + 4b3 + 4b2 – 2b2 4 + 4 = b4 + 4b3 + 2b2 eqn : x2 – ( 4 + 4 )x + () 4 = 0 x 2 – (b4 + 4b3 + 2b2 )x + b4 = 0 (Ans.) 20| ax2 + bx + c = 0 mgxKi‡Yi g~jØq I n‡j (a + b)–2 + (a + b)–2 Gi gvb wbY©q Ki| [RUET 15-16, 07-08] mgvavb: ax2 + bx + c = 0 + = – b a a + a = – b Ges = c a GLb, a + b = – a Ges a + b = – a (a + b)–2 + (a + b)–2 1 a 2 2 + 1 a 2 2 = ( + ) 2 – 2 a 2 () 2 = b 2 a 2 – 2c a a 2 c 2 a 2 = b 2 – 2ca a 2 c 2 (Ans.) 21| hw` ax2 + bx + c = 0 mgxKi‡Yi g~j `yBwU Ges nq, Z‡e ac(x2 + 1) – (b2 – 2ac)x = 0 Gi g~j `yBwU , Gi gva ̈‡g cÖKvk Ki| [RUET 12-13] mgvavb: ax2 + bx + c = 0 Gi g~j , + = – b a Ges = c a ac(x2 + 1) – (b2 – 2ac)x = 0 c a (x2 + 1) – b a 2 – 2 c a x = 0 x 2 – [{– ( + )}2 – 2]x + = 0 x 2 – ( 2 + 2 )x + = 0 x 2 – + x + = 0 x = , (Ans.) 22| ax2 + bx + c = 0 Gi GKwU g~j AciwUi n ̧Y n‡j †`LvI †h, nb2 = ac(1 + n)2 [RUET 10-11] mgvavb: awi, g~jØq Ges n + n = – b a (n + 1) = – b a = – b (n + 1)a Avevi, .n = c a n b 2 (n + 1) 2 a 2 = c a nb2 = ac(1 + n)2 (Showed) 23| hw` px2 + qx + 1 = 0 Ges qx2 + px + 1 = 0 mgxKiY `yBwUi GKwU gvÎ mvaviY g~j _v‡K, Z‡e cÖgvY Ki †h, p + q + 1 = 0 [RUET 09-10] mgvavb: awi, mvaviY g~j p 2 + q + 1 = 0 ......... (i) q 2 + p + 1 = 0 ......... (ii) (i) – (ii) 2 (p – q) + (q – p) = 0 2 (p – q) – (p – q) = 0 (p – q) ( 2 – ) = 0 2 – = 0 ∵ p q 2 = = 1 (i) †_‡K, p + q + 1 = 0 (Proved) 24| hw` px2 + qx + q = 0 mgxKi‡Yi g~j؇qi AbycvZ m : n nq, Z‡e cÖgvY Ki †h, m n + n m + q p = 0 [RUET 08-09] mgvavb: px2 + qx + q = 0 awi, g~jØq m I n m + n = – q p (m + n) = –q p Avevi, m.n = q p mn 2 = q p ; mn = q p 2 L.H.S = m n + n m + q p = m + n mn + q p = – q p p 2 q + q p = – q p + q p = 0 = R.H.S (Proved)