Nội dung text Polynomial CQ & MCQ Practice Sheet Solution.pdf
2 Higher Math 2nd Paper Chapter-4 g~j؇qi †hvMdj = ( + ) + ( – ) = 4 + ( – ) 2 = 4 + ( + ) 2 – 4 = 4 + 4 2 – 4(– 4) = 4 + 32 = 4 4 2 = 4(1 2) Ges g~j؇qi ̧Ydj = ( + ) ( – ) = 4 ( – ) 2 = 4 ( + ) 2 – 4 = 4 4 2 – 4(– 4) = 4 32 = 4( 4 2) = 16 2 wb‡Y©q mgxKiY, x 2 – (g~j؇qi †hvMdj)x + g~j؇qi ̧Ydj = 0 x 2 – 4(1 2) x +( 16 2) = 0 x 2 – 4(1 2) x 16 2 = 0 2| DÏxcK-1: 2mx2 + nx + 1 = 0 Ges nx2 + 2mx + 1 = 0 DÏxcK-2: x 3 + px2 + qx + r = 0 [XvKv †evW©- Õ23] (K) x 2 + (p2 – 3)x – (p + 2) = 0 mgxKi‡Yi GKwU g~j – 1 + ip n‡j, mgxKiYwU mgvavb Ki| (L) DÏxcK-1 Gi mgxKiY `yBwUi GKwUgvÎ mvaviY g~j _vK‡j, cÖgvY Ki †h, 2m + n + 1 = 0| (M) DÏxcK-2 Gi mgxKiYwUi g~jÎq , , n‡j, ( – ) 2 Gi gvb wbY©q Ki| mgvavb: (K) †`Iqv Av‡Q, x 3 + (p2 – 3)x – (p + 2) = 0 mgxKi‡Yi GKwU g~j – 1 + ip Avgiv Rvwb, RwUj g~j ̧‡jv AbyeÜx hyMjiƒ‡c _v‡K| mgxKiYwUi Aci GKwU g~j = – 1 – ip awi, mgxKiYwU Aci g~j cÖ`Ë mgxKiY n‡Z cvB, x 3 + (p2 – 3)x – (p + 2) = 0 (– 1 + ip) + (– 1 – ip) + = 0 – 1 + ip – 1 – ip + = 0 – 2 = 0 = 2 wb‡Y©q mgvavb, x = 2, – 1 + ip, – 1 – ip (L) †`Iqv Av‡Q, 2mx2 + nx + 1 = 0 Ges nx2 + 2mx + 1 = 0 g‡b Kwi, mgxKiY `yBwUi mvaviY g~j hv Dfq mgxKiY‡K wm× K‡i| 2m 2 + n + 1 = 0 ......(i) Ges n 2 + 2m + 1 = 0 .....(ii) (i) I (ii) bs mgxKiY n‡Z eRa ̧Yb m~Îvbymv‡i cvB, 2 n – 2m = n – 2m = 1 4m2 – n 2 n – 2m = 1 4m2 – n 2 n – 2m = 1 (2m) 2 – n 2 n – 2m = 1 (2m + n) (2m – n) = – 1 2m + n Avevi, 2 n – 2m = n – 2m = 1 – 1 2m + n = 1 2m + n + 1 = 0 (Proved) (M) †`Iqv Av‡Q, x 3 + px2 + qx + r = 0 mgxKi‡Yi g~jÎq , , + + = – p 1 = – p + + = q 1 = q = – r 1 = – r GLb, ( – ) 2 = ( – ) 2 + ( – ) 2 + ( – ) 2 = ( 2 – 2 + 2 ) + ( 2 – + 2 ) + ( 2 – 2 + 2 ) = 2( 2 + 2 + 2 ) – 2( + + ) = 2{( + + ) 2 – 2( + + )} – 2( + + ) = 2( + + ) 2 – 6( + + ) = 2(– p)2 – 6q = 2p2 – 6q = 2(p2 – 3q) wb‡Y©q gvb: 2(p2 – 3q) 3| f(x) = 3x2 – 4x + 1 Ges P(x) = x3 – 7x2 +8x + 10 [ivRkvnx †evW©- Õ23] (K) f(x) = 0 mgxKi‡Yi g~‡ji cÖK...wZ wbY©q Ki| (L) f(x) = 0 mgxKi‡Yi g~jØq , n‡j, | – | Ges 2 + 2 g~jwewkó mgxKiY wbY©q Ki| (M) P(x) = 0 mgxKi‡Yi GKwU g~j 5 n‡j, Aci g~j ̧‡jv wbY©q Ki| mgvavb: (K) †`Iqv Av‡Q, f(x) = 3x2 – 4x + 1 Ges f(x) = 0 3x2 – 4x + 1 = 0 mgxKiYwUi wbðvqK, D = (– 4)2 – 4.3.1 = 16 – 12 = 4 > 0 †h‡nZzD > 0 AZGe, mgxKiYwUi g~jØq ev ̄Íe I Amgvb|
4 Higher Math 2nd Paper Chapter-4 (x + 3)2 – (x – 3)2 = 100 – 20 (x – 3) 2 + y2 4.3x = 100 – 20 (x – 3) 2 + y2 3x = 25 – 5 (x – 3) 2 + y2 5 (x – 3) 2 + y2 = 25 – 3x (5 (x – 3) ) 2 + y2 2 = (25 – 3x)2 [cybivq eM© K‡i] 25(x2 – 6x + 9 + y2 ) = 625 – 150x + 9x2 25x2 – 150x + 25y2 + 225 = 9x2 – 150x + 625 16x2 + 25y2 = 400 x 2 25 + y 2 16 = 1 x 2 5 2 + y 2 4 2 = 1 ; hv GKwU Dce„Ë wb‡`©k K‡i Ges GwU‡K x 2 a 2 + y 2 b 2 = 1 ; a > b Gi mv‡_ Zzjbv K‡i cvB, a = 5, b = 4 ; a > b Dce„ËwUi kxl©we›`yi ̄’vbvsK ( a, 0) ( 5, 0) (M) †`Iqv Av‡Q, q(x) = lx 2 + mx + n Ges q(x) = 0 lx 2 + mx + n = 0 ......(i) Avevi, r(x) = nx2 + mx + l Ges r(x) = 0 nx2 + mx + l = 0 ......(ii) GLv‡b, (ii) bs mgxKi‡Yi GKwU g~j (i) bs mgxKi‡Yi GKwU g~‡ji wØ ̧Y| g‡b Kwi, (i) bs mgxKi‡Yi GKwU g~j (ii) bs mgxKi‡Yi GKwU g~j 2 (i) bs mgxKiY n‡Z cvB, l 2 + m + n = 0 .....(iii) (ii) bs mgxKiY n‡Z cvB, n(2) 2 + m.2 + l = 0 4n 2 + 2m + l = 0 ......(iv) (iii) bs I (iv) bs mgxKi‡Y eRa ̧Yb m~Î cÖ‡qvM K‡i cvB, lm – 2mn = 4n2 – l 2 = 1 2lm – 4mn lm – 2mn = 1 2lm – 4mn lm – 2mn = 1 2(lm – 2mn) 2 = 1 2 = 1 2 Avevi, lm – 2mn = 4n2 – l 2 lm – 2mn = 1 (2n) 2 – l 2 1 2 – m(2n – l) = 1 (2n + l) (2n – l) 1 2 (2n + l) (2n – l) = – m(2n – l) 1 2 (2n + l) (2n – l) + m(2n – l) = 0 (2n – l) m 1 2 (2n + l) = 0 nq, 2n – l = 0 l = 2n A_ev, m 1 2 (2n + l) = 0 2m (2n + l) = 0 2m = (2n + l) 2m2 = (l + 2n)2 AZGe, l = 2n A_ev 2m2 = (l + 2n)2 (Proved) 5| (i) mx2 + nx + n = L [h‡kvi †evW©- Õ23] (ii) S = 6x3 – 20x2 + 5 Ges T = 6 – 6x – 9x2 (K) GKwU wØNvZ mgxKiY wbY©q Ki hvi GKwU g~j 1 2 + i3 (L) hw` L = 0 mgxKi‡Yi g~j `ywUi AbycvZ p : q nq Zvn‡j cÖgvY Ki †h, p q + q p + n m = 0 (M) hw` S = T mgxKiYwUi g~j ̧‡jv mgvšÍi cÖMg‡bi †MŠwYK wecixZ cÖMgbfz3 nq Z‡e x Gi gvb wbY©q Ki| mgvavb: (K) GLv‡b, wØNvZ mgxKi‡Yi GKwU g~j 1 2 + i3 = 2 – i3 (2 + i3) (2 – i3) = 2 – i3 2 2 – (i3) 2 = 2 – i3 4 – 9i2 = 2 – i3 4 + 9 [⸪ i2 = – 1] = 2 13 – i 3 13 Avgiv Rvwb, RwUj g~j ̧‡jv hyMjiƒ‡c _v‡K| Aci g~jwU n‡e 2 13 + i 3 13 wb‡Y©q mgxKiY, x 2 – (g~j؇qi †hvMdj)x + g~j؇qi ̧Ydj = 0 x 2 – 2 13 – i 3 13 + 2 13 + i 3 13 x + 2 13 – i 3 13 2 13 + i 3 13 x 2 – 4 13 x + 2 13 2 – i 3 13 2 = 0 x 2 – 4 13 x + 4 169 – i 2 9 169 = 0 x 2 – 4 13 x + 4 169 + 9 169 = 0 [⸪ i2 = – 1] x 2 – 4 13 x + 1 13 = 0 13x2 – 4x + 1 = 0 (L) †`Iqv Av‡Q, mx2 + nx + n = L Avevi, L = 0 mx2 + nx + n = 0 mgxKiYwUi g~j؇qi AbycvZ p : q g‡b Kwi, g~jØq p I q p + q = – n m p + q = – n m Ges p q= n m pq = n m 2