Nội dung text Bài 26-27_Biến cố và xác suất biến cố theo cổ điển_Chỉ có đề.pdf
Câu 5: Gieo ba con súc sắc. Xác suất để số chấm xuất hiện trên ba con súc sắc như nhau là? A. 12 216 . B. 1 216 . C. 6 216 . D. 3 216 . BÀI 27. THỰC HÀNH TÍNH XÁC SUẤT THEO ĐỊNH NGHĨA CỔ ĐIỂN A. KIẾN THÚC CƠ BẢN CẦN NẮM - Trong nhiều bài toán, để tính số phần tử của không gian mẫu và biến cố ta sử dụng phương pháp tổ hợp như: các quy tắc đếm, các công thức tính số hoán vị, chỉnh hợp và tổ hợp. - Trong một số bài toán, phép thử được hình thành từ một vài phép thử. Khi đó để có thể mô tả đầy đủ, trực quan không gian mẫu và biến cố, ta sử dụng sơ đồ hình cây. - Cho E là một biến cố. Xác suất của biến cố đối E liên hệ với xác suất của E bởi công thức sau: P(E) 1 P(E). Trong một số bài toán, nếu tính trực tiếp xác suất của một biến cố gặp khó khăn, ta có thể tính gián tiếp bằng cách tính xác suất biến cố đối của nó. B. VÍ DỤ Ví dụ 1: Một hộp đựng 4 viên bi đỏ và 5 viên bi trắng. Lấy ngẫu nhiên 3 viên bi từ hộp đó. Xác suất để chọn được đúng một viên bi đỏ là bao nhiêu? Ví dụ 2: Trong một hộp đựng 10 cây viết trong đó có 4 cây viết hư. Lấy ngẫu nhiên 3 cây viết. Xác suất để chọn được cả 3 cây đều tốt là bao nhiêu? Ví dụ 3: Từ cỗ bài tú lơ khơ 52 con rút ngẫu nhiên 4 con. Xác suất để được 1 con át và 3 con K là bao nhiêu? Ví dụ 4: Có 6 quả cầu được đánh số từ 1 đến 6 và đựng trong một hộp. Lấy ngẫu nhiên 4 quả và xếp chúng theo thứ tự thành hàng ngang từ trái sáng phải. Xác suất để được tổng các chữ số bằng 10 là bao nhiêu? Ví dụ 5: Trong 100 vé số có 1 vé trúng 10.000 đồng, 5 vé trúng 5.000 đồng và 10 vé trúng 1.000 đồng. Một người mua ngẫu nhiên 3 vé. Xác suất để người đó trúng thưởng đúng 3.000 đồng là bao nhiêu? Ví dụ 6: Một hộp chứa 10 viên bi gồm 6 viên bi màu trắng và 4 viên bi màu đỏ. Lấy ngẫu nhiên 4 viên bi từ hộp đó. Xác suất để lấy được 2 viên bi màu trắng và 2 viên bi màu đỏ là bao nhiêu? Ví dụ 7. Gieo một đồng tiền cân đối ba lần. a) Vẽ sơ đồ hình cây mô tả các phần tử của không gian mẫu. b) Tính xác suất của các biến cố: A: "Trong ba lần gieo có hai lần sấp, một lần ngửa"; B: "Trong ba lần gieo có ít nhất một lần sấp". Ví dụ 8: Một hộp đựng 20 viên bi gồm 12 viên bi màu đỏ và 8 viên bi màu xanh. Lấy ngẫu nhiên 3 viên bi từ hộp đó. Xác suất để có ít nhất một viên bi màu đỏ là bao nhiêu? Ví dụ 9: Gieo liên tiếp 4 lần một đồng tiền cân đối và đồng chất. Xác suất của biến cố A: “Có ít nhất một lần mặt ngửa xuất hiện” là bao nhiêu? Ví dụ 10: Một tổ có 10 nam và 5 nữ. Chọn ngẫu nhiên 4 người. Xác suất để có ít nhất một nữ bằng bao nhiêu? C. CÂU HỎI TRẮC NGHIỆM Câu 1: Một đội gồm 5 nam và 8 nữ. Lập một nhóm gồm 4 người hát tốp ca, tính xác suất để trong 4 người được chọn có ít nhất 3 nữ.