Nội dung text StraightLine & division Daily-4 MCQ (Set-A)-With Solve.pdf
1 Varsity Daily-04 [Set-A (Solve Sheet)] wm‡jevm: mij‡iLv + †Kvl wefvRb c~Y©gvb: 60 †b‡MwUf gvK©: 0.25 mgq: 35 wgwbU MwYZ (Mathmatics) 1. †Kv‡bv we›`yi †cvjvi ̄’vbv1⁄4 (3, 150) n‡j, Kv‡Z©mxq ̄’vbv1⁄4- 3 3 2 3 2 3 3 2 – 3 2 – 3 3 2 3 2 – 3 3 2 – 3 2 DËi: – 3 3 2 3 2 e ̈vL ̈v: x = 3cos150 = 3 – 3 2 = – 3 3 2 y = 3sin150 = 3 1 2 = 3 2 Kv‡Z©mxq ̄’vbv1⁄4 – 3 3 2 3 2 2. 2x – 3y + 8 = 0 †iLvi Dci j¤^ Ges (3, 2) we›`yMvgx †iLvi mgxKiY †KvbwU? 3x – 2y + 13 = 0 3x + 2y – 13 = 0 3x + 2y + 13 = 0 – 3x + 2y + 13 = 0 DËi: 3x + 2y – 13 = 0 e ̈vL ̈v: 2x – 3y + 8 = 0 †iLvi j¤^‡iLvi mgxKiY: 3x + 2y + k = 0 †iLvwU (3, 2) we›`yMvgx 3 3 + 2 2 + k = 0 k = – 13 mgxKiYwU: 3x + 2y – 13 = 0 3. y = 3x + 3 I y – x = 8 mij‡iLv؇qi AšÍf©y3 m~2‡Kv‡Yi gvb KZ? tan–1 2 3 tan–1 4 3 tan–1 1 3 tan–1 1 2 DËi: tan–1 1 2 e ̈vL ̈v: m1 = 3, m2 = 1 tan = m1 – m2 1 + m1m2 = 3 – 1 1 + 3 1 = 1 2 m~2‡KvY, = tan–1 1 2 4. †Kv‡bv wÎfz‡Ri kxl©we›`y wZbwUi ̄’vbv1⁄4 (cos3, sin3cos5, sin5Ges (0, 0) n‡j, wÎfz‡Ri †ÿÎdj KZ eM©GKK? 1 2 cos3 1 2 sin3 1 2 sin7 2 1 2 sin2 DËi: 1 2 sin2 e ̈vL ̈v: = 1 2 0 cos3 cos5 0 sin3 sin5 1 1 1 = 1 2 (sin5cos3 – sin3cos5) = 1 2 sin2eM©GKK 5. r 2 = a2 sin2 Gi Kv‡Z©mxq mgxKiY †KvbwU? x 2 + y2 = a 2 (x2 + y2 ) 2 = 2a2 xy (x2 – y 2 ) 2 = 2a2 xy (x2 + y2 ) 2 = 2a2 xy 2 DËi: (x2 + y2 ) 2 = 2a2 xy e ̈vL ̈v: r 2 = a2 sin2 r 2 = 2a2 sincos r 4 = 2a2 rsin . rcos (r2 ) 2 = 2a2 xy (x2 + y2 ) 2 = 2a2 xy 6. †h we›`y (1, 4) I (9, – 12) we›`y؇qi ms‡hvMKvix †iLvsk‡K 3 : 5 Abycv‡Z AšÍwe©f3 K‡i Zvi ̄’vbv1⁄4 KZ? (4, – 2) (– 2, 4) (– 4, 2) (– 4, – 2) DËi: (4, – 2) e ̈vL ̈v: x = 3 9 + 5 1 5 + 3 = 4 y = 3 (– 12) + 5 4 5 + 3 = – 2 (x, y) (4, – 2) 7. †h we›`yi mv‡c‡ÿ (– 3, 6) we›`yi cÕwZwe¤^ (7, 4) †mB we›`yi ̄’vbv1⁄4 KZ? (2, 5) (4, 1) (1, 4) (3, 4) DËi: (2, 5) e ̈vL ̈v: G‡ÿ‡Î mv‡cÿ we›`ywU n‡e cÖ`Ë we›`y؇qi ga ̈we›`y| mv‡cÿwe›`y – 3 + 7 2 6 + 4 2 = (2, 5) 8. P we›`yi fzR 2| x Aÿ n‡Z P we›`yi `~iZ¡y Aÿ n‡Z Gi `~i‡Z¡i wØ ̧Y n‡j, P we›`yi ̄’vbv1⁄4Ñ (2, 4) A_ev (2, – 4) (4, – 8) A_ev (4, 8) (4, 1) A_ev (4, 0) (4, 1) A_ev (1, – 1) DËi: (2, 4) A_ev (2, – 4) e ̈vL ̈v: (2, y) GLv‡b, |y| = 2 2 y = 4 P we›`y (2, 4) A_ev (2, – 4) 9. x A‡ÿi mv‡c‡ÿ x 2 + y2 – 4x + 8y + 7 = 0 e„‡Ëi cÕwZwe‡¤^i mgxKiY wb‡Pi †KvbwU?
4 DËi: 2y = – 4x + 3 e ̈vL ̈v: cÖ_g †iLvi Xvj = 1 2 Gi Dci j¤^ †iLvi Xvj = – 2 Ackb Gi mij‡iLvi Xvj = – 4 2 = – 2 27. A(2, 5), B(5, 9) Ges D(6, 8) we›`yÎq ABCD i¤^‡mi wZbwU kxl©we›`y n‡j, PZz_© we›`yC Gi ̄’vbv1⁄4 †KvbwU? (4, 3) (9, 12) (4, 7) (7, 9) DËi: (9, 12) e ̈vL ̈v: A(2, 5) B(5, 9) D(6, 8) C(x, y) C (5 + 6 – 2, 9 + 8 – 5) (9, 12) 28. y = 2x + 1 I 2y – x = 4 †iLv `yBwUi AšÍe©Z©x †Kv‡Yi mgwØLÛK y Aÿ‡K P I Q we›`y‡Z †Q` K‡i| PQ Gi ˆ`N© ̈ KZ? 4 2 4 3 2 3 DËi: 4 3 e ̈vL ̈v: 2x – y + 1 2 2 + (– 1) 2 = 2y – x – 4 (– 1) 2 + 22 2x – y + 1 = (2y – x – 4) ‘+’ wb‡q, 3x – 3y + 5 = 0 y A‡ÿ x = 0 n‡j, y = 5 3 ‘–’ wb‡q, x + y – 3 = 0 y A‡ÿ x = 0 n‡j, y = 3 PQ = 3 – 5 3 = 4 3 GKK 29. a 2 x + b 2 y = 1 mgxKiYwU wK wb‡`©k K‡i? e„Ë Dce„Ë Awae„Ë mij‡iLv DËi: mij‡iLv e ̈vL ̈v: x I y Gi NvZ 1, ZvB mij‡iLv wb‡`©k K‡i| 30. A(h, k) we›`ywU 6x – y = 1 †iLvi Dci Aew ̄’Z Ges B(k, h) we›`ywU 2x – 5y = 5 †iLvi Dci Aew ̄’Z n‡j, AB †iLvwUi mgxKiYÑ x + y = 6 3x – 5y = 0 2x – 5y + 5 = 0 2x – 5y – 5 = 0 DËi: x + y = 6 e ̈vL ̈v: A(h, k) we›`ywU 6x – y = 1 †iLvi Dci Aew ̄’Z n‡j, 6h – k = 1 k = 6h – 1 ...... (i) B(k, h) we›`ywU 2x – 5y = 5 †iLvi Dci Aew ̄’Z n‡j, 2k – 5h = 5 2(6h – 1) – 5h = 5 7h = 7 h = 1 (i) n‡Z, k = 6 – 1 = 5 A(1, 5) I B(5, 1) AB †iLvi mgxKiY: y – 5 x – 1 = 5 – 1 1 – 5 = – 1 y – 5 = – x + 1 x + y = 6 RxeweÁvb (Biology) 31. wb‡Pi †KvbwU gvB‡Uvwm‡mi Ae`vb? Rbb‡Kv‡li msL ̈v e„w× Rbb‡Kv‡li m„wó μgvMZ ¶q c~iY (K + M) DËi: (K + M) e ̈vL ̈v: Rbb‡Kvl m„wó nq wg‡qvwmm cÖwμqvq, wKš` msL ̈v e„w× cvq gvB‡Uvwmm cÖwμqvq| Avi μgvMZ ‣q c~iYI gvB‡Uvwm‡mi Ae`vb| 32. †μv‡gv‡mvg ̧‡jv‡Z cvwb †hvRb nq KLb? †cÖv‡d‡R †cÖv‡gUv‡d‡R A ̈vbv‡d‡R †U‡jv‡d‡R DËi: †U‡jv‡d‡R e ̈vL ̈v: †cÖv‡dR `kvq †μv‡gv‡mv‡g cvwbi we‡qvRb N‡U| wKš` †U‡jv‡d‡R cvwb †hvRb N‡U| 33. SCP Drcv`‡bi †¶‡Î †Kvb †Kvl wefvRb c×wZ ̧iæZ¡c~Y© f‚wgKv cvjb K‡i? A ̈vgvB‡Uvwmm wg‡qvwmm gvB‡Uvwmm †Kv‡bvwUB bq DËi: A ̈vgvB‡Uvwmm e ̈vL ̈v: Single cell proteins (SCP) Drcv`‡bi †‣‡Î A ̈vgvB‡Uvwmm ̧iæZ¡c~Y© f‚wgKv cvjb K‡i| 34. wKWwb †_‡K Drcbœ nq †KvbwU? mvBwK¬b-CDK †hŠM g ̈vPz‡ikb d ̈v±i Erythropoietin SSBP DËi: Erythropoietin e ̈vL ̈v: Bone marrow-†Z †jvwnZ i3KwYKv †Kv‡li msL ̈v e„w×i Rb ̈ wKWwb Erythropoietin ˆZwi K‡i| 35. gv‡qvwmm †Kvl wefvR‡b †μv‡gv‡mv‡gi KZevi wefvRb N‡U? GKevi wZbevi `yBevi Pvievi DËi: GKevi e ̈vL ̈v: mvB‡UvcøvR‡gi wefvRb‡K e‡j mvB‡UvKvB‡bwmm| gv‡qvwmm †Kvl wefvR‡b wbDwK¬qvm `yBevi wKš` †μv‡gv‡mvg GKevi wefvwRZ nq| 36. wb‡Pi †KvbwU P53 †cÖvwU‡bi cÖavb KvR? †Kvl wefvRb Z¡ivwš^Z Kiv ATP Drcv`b e„w× Kiv ¶wZMÖ ̄Í DNA kbv3 K‡i †KvlPμ _vgv‡bv ivB‡ev‡Rvg MVb Kiv DËi: ¶wZMÖ ̄Í DNA kbv3 K‡i †KvlPμ _vgv‡bv e ̈vL ̈v: P53 GKwU ̧iæZ¡c~Y© wUDgvi mv‡cÖmi †cÖvwUb hv †Kv‡li DNA ¶wZMÖ ̄Ín‡j Zv kbv3 K‡i †KvlPμ‡K _vwg‡q †`q| G‡Z DNA †givg‡Zi my‡hvM cvIqv hvq| hw` ¶wZ gvivZ¥K nq, Z‡e GwU