Nội dung text Newtonian & Qualitative-2- Daily-3 (Set-A)-With Solve.pdf
3 mu t †Kv‡bvwUB bq DËi: mu t e ̈vL ̈v: F = m(v – u) t J = F.t = m(v – u) = P †h‡nZz F cwieZ©bkxj Zvn‡j, P mg‡qi mv‡_ mv‡_ e„w× cv‡e| 17. Mv‡Qi Wv‡j emv 2 kg f‡ii GKwU cvwL‡K 0.1 kg f‡ii GKwU ey‡jU 100 ms–1 Avbyf‚wgK †e‡M AvNvZ K‡i cvwLwUi wfZ‡iB i‡q †Mj| cvwLi Avbyf‚wgK †eM KZ n‡e? 100 11 100 2 100 21 100 31 DËi: 100 21 e ̈vL ̈v: mu1 + 0 = (M + m) v2 mu1 = (M + m) v2 0.1 100 = (2 + 0.1) v2 v2 = 10 2.1 v2 = 10 21 10–1 v2 = 10 21 10 v2 = 100 21 18. 2 106 kg f‡ii GKwU i‡K‡Ui Dci 5 107 N Gi GKwU cÖv_wgK av°v cÖ‡qvM Kiv n‡jv| DÇq‡bi gyn~‡Z© i‡K‡Ui Z¡iY KZ? [g = 10 ms–2 ] 6 ms–2 56 ms–2 5 ms–2 15 ms–2 DËi: 15 ms–2 e ̈vL ̈v: DaŸ©gyLx ej = T – mg F = ma ma = T – mg a = T – mg m = 5 107 – 2 106 10 2 106 = 3 107 2 106 = 1.5 10 = 15 ms–2 19. MwZ RoZv wbDU‡bi †Kvb m~·K mg_©b K‡i? 1g 2q 3q †Kv‡bvwUB bq DËi: 1g e ̈vL ̈v: wbDU‡bi 1g m~Î: evB‡i †_‡K †Kv‡bv ej cÖhy3 bv n‡j w ̄’i e ̄` wPiKvj w ̄’i _vK‡e Ges MwZkxj e ̄` wPiKvj mg‡e‡M mijc‡_ MwZkxj _vK‡e| 20. el©vKv‡j PjšÍ Uav‡Ki PvKv n‡Z Kuv`v wQUKvq †Kb? U‡K©i Kvi‡Y †e‡Mi Kvi‡Y f‡ii Kvi‡Y †K›`agyLx ej n«vm cvIqvi Kvi‡Y DËi: †K›`agyLx ej n«vm cvIqvi Kvi‡Y e ̈vL ̈v: †K›`agyLx ej _v‡K bv e‡j Kv`v wQUKvq| 21. 5 kg f‡ii GKwU eøK‡K Avbyf‚wgK Z‡ji Dci w`‡q KZ e‡j Uvb‡j e ̄`wU mg‡e‡M Pj‡e? (MZxq NlY© ̧Yv1⁄4 = 1 9.8) 9.8 N 1 N 5 N 9 N DËi: 5 N e ̈vL ̈v: F = kmg = 1 9.8 5 9.8 = 5 N 22. mge„Ëxq MwZ‡Z N~Y©vqgvb GKwU KYvi †KŠwYK fi‡eM L, †KŠwYK K¤úv1⁄4 16 ̧Y Ges MwZkw3 2 ̧Y Kiv n‡j, bZzb †KŠwYK fi‡eM KZ n‡e? L 33 L 2 L 4 L 8 DËi: L 8 e ̈vL ̈v: E = 1 2 I 2 = 1 2 (I) = 1 2 L E1 E2 = L1 L2 1 2 L2 = E2 E1 1 2 L1 = 1 16 2 1 L = L 8 23. GKwU PvKvi t †m‡K‡Û †KŠwYK miY = (0t + 12t 2 ) rad n‡j, PvKvwUi †KŠwYK Z¡i‡Yi gvb †KvbwU? 28 24 18 9 DËi: 24 e ̈vL ̈v: = d dt = (0 + 24t) rads–1 = d dt = 24 rads–2 24. 15 kg f‡ii GKwU w ̄’i e ̄`i Dci 5s e ̈vcx 12 N ej cÖhy3 n‡j, D3 e ̄`i †e‡Mi cwieZ©b KZ n‡e? 0.5 ms–1 2.0 ms–1 3.0 ms–1 4.0 ms–1