PDF Google Drive Downloader v1.1


Báo lỗi sự cố

Nội dung text TRƯỜNG THPT NGÔ GIA TỰ.pdf

SỞ GD&ĐT VĨNH PHÚC TRƯỜNG THPT NGÔ GIA TỰ -------------------- (Đề thi có 04 trang) ĐỀ ÔN TẬP THI TỐT NGHIỆP THPT NĂM 2025 MÔN: TOÁN Thời gian làm bài: 90 Phút Họ và tên GV ra đề: Nguyễn Thu Thủy Mã đề thi 668 Họ và tên thí sinh ..............................................Số báo danh.................. PHẦN I. Câu trắc nghiệm nhiều phương án lựa chọn. Thí sinh trả lời từ câu 1 đến câu 12. Mỗi câu hỏi thí sinh chỉ chọn một phương án. Câu 1. Cho hàm số f x  có bảng biến thiên như sau: Hàm số đã cho đồng biến trên khoảng nào dưới đây? A. -3 3; . B. -3 0;  . C. 0 3;  . D. -¥ -; 3. Câu 2. Xác định số hàng đầu 1 u và công sai d của cấp số cộng un  có 9 2 u u = 5 và 13 6 u u = + 2 5 . A. 1 u = 3 và d = 4 . B. 1 u = 3 và d = 5 . C. 1 u = 4 và d = 5 . D. 1 u = 4 và d = 3 . Câu 3. Tập nghiệm của bất phương trình 2 4 x £ là: A. -¥;2 B. 0;2 C. -¥;2 D. 0;2 Câu 4. 4 x dx ò bằng A. 1 5 5 x C+ . B. 3 4x C+ . C. 5 x C+ . D. 5 5x C+ . Câu 5. Cho   1 2 0 I x m x = - 4 2 d ò . Có bao nhiêu giá trị nguyên của mđể I + > 6 0 ? A. 1. B. 5 . C. 2 . D. 3 . Câu 6. Trong không gian Oxyz , cho mặt phẳng a : 2 3 1 0 x z - + = . Vectơ pháp tuyến của mặt phẳng a là: A. n2 = - 2 0 3 ; ;  r . B. n1 = - 2 3 1 ; ;  r . C. n3 = - -  2 0 3 ; ;  r . D. n4 = - -  2 3 1 ; ;  r . Câu 7. Trong không gian Oxyz , phương trình tham số của đường thẳng đi qua điểm A2 0 1 ; ; -  và vuông góc với mặt phẳng P x y z  : 2 3 0 - + + = là: A..   2 2 1 1 x t y t z t ¡ ì = + ï í = - Î ï = - î B..   2 2 1 x t y t t z t ¡ ì = + ï í = - Î ï = - + î C.   2 2 1 1 x t y t z t ¡ ì = + ï í = - Î ï = - + î . D.   2 2 1 x t y t t z t ¡ ì = + ï í = - Î ï = - î .
Câu 8. Phương trình nào sau đây là phương trình của mặt cầu? A.       2 2 2 x y z - + - + + = 1 3 2 3 . B.       2 2 2 x y z - + - + + = - 1 3 2 3 . C. x y z - + - + + = 1 3 2 9      . D. x y z - + - + + = - 1 3 2 9      . Câu 9. Bảng sau thống kê khối lượng một số quả măng cụt được lựa chọn ngẫu nhiên trong một thùng hàng. Khối lượng (gam) é80 82 ;  ë é82 84 ;  ë é84 86 ;  ë é86 88 ;  ë é88 90 ;  ë Số quả 17 20 25 16 12 Khoảng biến thiên của mẫu số liệu ghép nhóm trên là: A. 2 gam. B. 12 gam. C. 10 gam. D. 20 gam. Câu 10. Cho hình chóp tứ giác S ABCD . có đáy ABCD là hình vuông cạnh a , cạnh bên SA vuông góc với mặt phẳng đáy và SA a = 2 . Tính thể tích khối chóp S ABCD . . A. 3 2 6 a B. 3 2 4 a C. 3 2a D. 3 2 3 a Câu 11. Cho hàm số     3 2 f x ax bx cx d a b c d = + + + Î , , , ¡ có bảng biến thiên như sau: Có bao nhiêu số dương trong các số a b c d , , , ? A. 2 . B. 4 . C. 1. D. 3 . Câu 12. Cho hình lập phương ABCD A B C D . ¢ ¢ ¢ ¢ (tham khảo hình bên). Giá trị sin của góc giữa đường thẳng AC ' và mặt phẳng  ABCD bằng A. 3 3 . B. 2 2 . C. 3 2 . D. 6 3 . PHẦN II. Câu trắc nghiệm đúng sai. Thí sinh trả lời từ câu 13 đến câu 16. Trong mỗi ý a), b), c), d) ở mỗi câu, thí sinh chọn đúng hoặc sai. Câu 13. Cho hàm số 3 y x x = - + 3 2 . Các mệnh đề sau đây là đúng hay sai? a) Hàm số nghịch biến trên khoảng ( 1;1) - . b) Hàm số có giá trị cực tiểu bằng 1. c)  1;0 0;1 min max 4 y y - + = . d)Phương trình 3 x x m - + = 3 2 có 3 nghiệm phân biệt khi a m b < < , khi đó a b + = 3 .
Câu 14. Trong không gian Oxyz , cho đường thẳng 3 2 1 2 3 : x z y D + - = = - và mặt phẳng P x y z  : + - + = 2 2025 0 . Các mệnh đề sau đây là đúng hay sai? a) Gọi u r và n r lần lượt là vec tơ chỉ phương và véc tơ pháp tuyến của D và P . Khi đó u n. = 0 r r b) Phương trình mặt phẳng Q đi qua A( ; ; ) 1 2 3 - và song song với mặt phẳng P là Q x y z  : + - - = 2 6 0 c) Đường thẳng D' vuông góc với D và song song với mặt phẳng Oxy có vectơ chỉ phương là u2 3 3 2 ; ;  r = - . d) Đường thẳng 2 d vuông góc với P tạo với Q x my  : + - = 3 0 một góc 30o . Khi đó tổng tất cả các giá trị của tham số m bằng 16 5- . Câu 15. Biểu đồ dưới đây biểu thị kết quả thu thập được về mức tiền (đơn vị: tỷ đồng) của một số khách hàng nợ ở hai ngân hàng A và B . Xét tính đúng/sai các mệnh đề sau: a) Bảng giá trị đại diện cho mỗi nhóm và bảng tần số ghép nhóm cho mẫu số liệu tương ứng với biểu đồ trên b) Độ lệch chuẩn của mẫu số liệu ghép nhóm của ngân hàng A bằng 661 361 . c) Độ lệch chuẩn của mẫu số liệu ghép nhóm của ngân hàng B bằng 3221 1444 . d) Người ta dùng độ lệch chuẩn để so sánh mức độ rủi ro của số tiền khách hàng nợ ngân hàng. Ngân hàng nào có độ lệch chuẩn cao hơn thì có độ rủi ro lớn hơn. Theo quan điểm trên, độ rủi ro của ngân hàng A cao hơn ngân hàng B Câu 16. Một thùng có các hộp loại I và loại II, trong đó có 2 hộp loại I, mỗi hộp có 13 sản phẩm tốt và 2 phế phẩm và có 3 hộp loại II, mỗi hộp có 6 sản phẩm tốt và 4 phế phẩm. Các mệnh đề sau đây là đúng hay sai? a) Số cách chọn được 2 sản phẩm tốt trong hộp loại I là 78 cách.
b) Xác suất chọn được 2 phế phẩm trong hộp loại II là 12 15 . c) Chọn ngẫu nhiên trong thùng một hộp và từ hộp đó lấy ra hai sản phẩm để kiểm tra, xác suất để hai sản phẩm này đều tốt là 87 175 . d) Chọn ngẫu nhiên trong thùng một hộp và từ hộp đó lấy ra hai sản phẩm để kiểm tra, giả sử hai sản phẩm đó đều tốt thì xác suất để hai sản phẩm đó thuộc hộp loại I là 52 87 . PHẦN III. Câu trắc nghiệm trả lời ngắn. Thí sinh trả lời từ câu 17 đến câu 22. Câu 17. Ta xác định được các số a b c , , để đồ thị hàm số 3 2 y x ax bx c = + + + đi qua điểm 1 0;  và có điểm cực trị -2 0; . Tính giá trị biểu thức 2 2 2 T a b c = + + . Câu 18. Một vật chuyển động dọc theo một đường thẳng sao cho vận tốc của nó tại thời điểm t (giây) là   2 v t t t = - - 6 (mét/giây). Quãng đường (mét) vật đi được trong khoảng thời gian 1 4 £ £t bằng (làm tròn tới hàng phần mười) Câu 19. Thống kê số thẻ vàng của mỗi câu lạc bộ trong giải ngoại hạng Anh mùa giải 2021 2022 – cho kết quả sau: 101 79 79 78 75 73 68 67 67 63 63 61 60 59 57 55 55 50 47 42 (Theo premierleauge.com) Hãy tìm khoảng biến thiên của mẫu số liệu ghép nhóm có độ dài bằng nhau với nhóm đầu tiên là [40; 50)? Câu 20. Trong hệ trục Oxyz cho trước (đơn vị trên trục là mét), cho một trạm thu phát sóng 5G có bán kính vùng phủ sóng của trạm ở ngưỡng 600m được đặt ở vị trí I 200 450 60 ; ; . Tìm giá trị lớn nhất của m (làm tròn đến hàng đơn vị) để một người dùng điện thoại ở vị trí A m m  + + 100 370 0 ; ;  có thể sử dụng dịch vụ của trạm nói trên. Câu 21. Trong một kì thi tốt nghiệp trung học phổ thông, một tỉnh X có 80% học sinh lựa chọn tổ hợp A00 (gồm các môn Toán, Vật lí, Hoá học). Biết rằng, nếu một học sinh chọn tổ hợp A00 thì xác suất để học sinh đó đỗ đại học là 0,6; còn nếu một học sinh không chọn tổ hợp A00 thì xác suất để học sinh đó đỗ đại học là 0,7. Chọn ngẫu nhiên một học sinh của tỉnh X đã tốt nghiệp trung học phổ thông trong kì thi trên. Biết rằng học sinh này đã đỗ đại học. Tính xác suất để học sinh đó chọn tổ hợp A00. Kết quả làm tròn đến chữ số thập phân thứ 2 Câu 22. Cho hình chóp đều S ABC . có SA a = . Gọi D E, lần lượt là trung điểm của SA SC , , biết BD vuông góc với AE . Biết thể tích khối chóp S ABC . theo a là 3 a m n . Tính m n + ------------------------------------------ Hết --------------------------------------------

Tài liệu liên quan

x
Báo cáo lỗi download
Nội dung báo cáo



Chất lượng file Download bị lỗi:
Họ tên:
Email:
Bình luận
Trong quá trình tải gặp lỗi, sự cố,.. hoặc có thắc mắc gì vui lòng để lại bình luận dưới đây. Xin cảm ơn.