Nội dung text Đề số 06_KT GK 1_Đề bài_Toán 10_CD.pdf
ĐỀ ÔN TẬP KIỂM TRA GIỮA KÌ 1 NĂM HỌC 2024-2025 MÔN THI: TOÁN 10 – CÁNH DIỀU (Thời gian làm bài 90 phút, không kể thời gian giao đề) PHẦN I. Câu trắc nghiệm nhiều phương án lựa chọn. Thí sinh trả lời từ câu 1 đến câu 12. Mỗi câu thí sinh chỉ chọn một phương án. Câu 1: Trong các phát biểu sau đây, phát biểu nào là một mệnh đề toán học? A. Hình chữ nhật là hình bình hành phải không?. B. Số 1 là số nguyên tố. C. Tam giác cân có một góc 60 có là tam giác đều không? D. Học, học nữa, học mãi. Câu 2: Mệnh đề phủ định của mệnh đề P: “ 2 + − x x x : 1 0 ” là A. P : “ 2 + − x x x : 1 0 ”. B. P : “ 2 + − x x x : 1 0 ”. C. P : “ 2 + − x x x : 1 0 ”. D. P : “ 2 + − x x x : 1 0 ”. Câu 3: Tìm số phần tử của tập hợp ( )( ) 2 2 S x x x x = − + − = ∣ 3 4 1 2 0 . A. 1. B. 2 . C. 3 . D. 4 . Câu 4: Cho tập hợp A x x x = + + 2 1 4 3 . Tập hợp nào dưới đây là tập con của tập A ? A. (−;2) . B. (−1;0) . C. (3;+) . D. (− + 1; ). Câu 5: Cho A x R x = + : 2 0 , B x R x = − : 5 0 . Khi đó A B là: A. −2 5 ; . B. −2 6 ; . C. −5 2 ; . D. (− + 2; ). Câu 6: Bất phương trình nào sau đây không phải là bất phương trình bậc nhất hai ẩn? A. x y − − 5 1 0 . B. 2 3 5 0 x y − + . C. 10 0 2 3 x y − + . D. 2 x y x + − + 3 2 1 0 . Câu 7: Miền nghiệm của bất phương trình 3 2 6 x y + là phần không bị gạch bỏ nào ĐỀ THỬ SỨC 06
A. . B. . C. . D. . Câu 8: Cặp số ( x y; ) nào sau đây là nghiệm của hệ bất phương trình 3 0 2 1 x y x y + − A. (1;0) . B. (3;1) . C. (1; 3− ) . D. (−2;3) . Câu 9: Đẳng thức nào sau đây sai? A. o o sin 45 sin 45 2 + = . B. o o sin30 cos60 1 + = . C. o o sin60 cos150 0 + = . D. o o sin120 cos30 0 + = . Câu 10: Cho ABC với các cạnh AB c AC b BC a = = = , , . Gọi R r S , , lần lượt là bán kính đường tròn ngoại tiếp, nội tiếp và diện tích của tam giác ABC . Trong các phát biểu sau, phát biểu nào sai? A. 4 abc S R = . B. sin a R A = . C. 1 sin 2 S ab C = . D. 2 2 2 a b c ab C + − = 2 cos . Câu 11: Cho ABC có 0 B a c = = = 60 , 8, 5. Độ dài cạnh b bằng: A. 7 . B. 129. C. 49 . D. 129 . Lời giải Chọn A Ta có: 2 2 2 2 2 0 b a c ac B b = + − = + − = = 2 cos 8 5 2.8.5.cos60 49 7 . Câu 12: Tính chu vi tam giác ABC , biết rằng AB = 6 và 2sin 3sin 4sin A B C = = .
A. 26 . B. 13. C. 5 26 . D. 10 6 . PHẦN II. Câu trắc nghiệm đúng sai. Thí sinh trả lời từ câu 1 đến câu 4. Trong mỗi ý a), b), c), d) ở mỗi câu, thí sinh chọn đúng hoặc sai . Câu 1: Cho hai tập hợp A x x = + | 2 0 và B x x = − | 5 0 . a) A = − + 2; ) . b) A B = − 2;5). c) A B\ 5; . = + ) d) C A B A ( = + ) (5; .) Câu 2: Để giúp đỡ những người khó khăn, thu nhập thấp được về quê ăn tết đoàn tụ với gia đình, một công ty đã thuê xe dịch vụ cho những chuyến xe nghĩa tình đưa 180 người và 8 tấn hàng về quê ăn tết. Nơi thuê xe có hai loại xe A và B, trong đó xe A có 10 chiếc, xe B có 9 chiếc. Một xe loại A cho thuê với giá 5 triệu đồng và một xe loại B cho thuê với giá 4 triệu đồng. Biết rằng mỗi xe loại A có thể chở tối đa 30 người và 0,8 tấn hàng, mỗi xe loại B có thể chở tối đa 20 người và 1,6 tấn hàng. Các mệnh đề sau đây đúng hay sai? a) Gọi x y, lần lượt là số xe loại A và B cần thuê. Khi đó, số tiền cần bỏ ra để thuê xe là F x y x y ( ; 5 4 ) = + . b) Gọi x y, lần lượt là số xe loại A và B cần thuê, ta có hệ bất phương trình biểu thị các điều kiện của bài toán là: ( ) 30 20 180 0,8 1,6 8 * . 0 10 0 9 x y x y x y + + c) Điểm M (4;2) thuộc miền nghiệm của hệ bất phương trình biểu thị các điều kiện của bài toán. d) Công ty cần thuê 4 xe loại A và 3 xe loại B thì chi phí thấp nhất. Câu 3: Cho 2 cos 3 = − . Xét tính đúng sai của các khẳng định sau: a) 90 180 b) co t 0 . c) 5 sin 3 = − . d) 5 tan 2 = . Câu 4: Tam giác ABC có AB =14, AC =13, BC =15 . Khi đó: a) Tam giác ABC có diện tích là 39.
b) Tam giác ABC có bán kính đường tròn nội tiếp là 4. c) Độ dài đường cao ứng với cạnh AB có độ dài là 12 . d) Tam giác ABC có 3 góc là góc nhọn. PHẦN III. Câu trắc nghiệm trả lời ngắn. Thí sinh trả lời từ câu 1 đến câu 6. Câu 1: Có bao nhiêu số tự nhiên n để mệnh đề chứa biến P n( ) : “ n 2024 ” là mệnh đề đúng? Câu 2: Cho hai tập khác rỗng A m B m m = − = − + ( 1;104]; ( 6;2 2), . Có bao nhiêu giá trị nguyên của tham số m để A B ? Câu 3: Có ba nhóm máy A B C , , dùng để sản xuất ra hai loại sản phẩm I và II. Để sản xuất một đơn vị sản phẩm mỗi loại phải lần lượt dùng các máy thuộc các nhóm khác nhau. Số máy trong một nhóm và số máy của từng nhóm cần thiết để sản xuất ra một đơn vị sản phẩm thuộc mỗi loại được cho trong bảng sau: Một đơn vị sản phẩm loại I lãi ba triệu đồng, một đơn vị sản phẩm loại II lãi năm triệu đồng. Hỏi lợi nhuận cao nhất mà đơn vị thu được là bao nhiêu? Câu 4: Cho cot = 2 . Tính 3 3 sin 2cos sin cos B + = − . Câu 5: Trên nóc một tòa nhà có một cột ăngten cao 5m . Từ vị trí quan sát A cao 7m so với mặt đất, có thể nhìn thấy đỉnh B và chân C của cột ăng-ten dưới góc 50 và 40 so với phương nằm ngang. Tính chiều cao của tòa nhà? Kết quả làm tròn đến hàng phần chục. Câu 6: Từ một miếng bìa hình tròn, bạn Nam cắt ra một hình tam giác ABC có độ dài các cạnh AB cm AC cm BC cm = = = 4 , 5 , 6 . Tính bán kính R của miếng bìa ban đầu.