Nội dung text XII - maths - chapter 9 - VECTOR TRIPLE PRODUCT (237-246).pdf
JEE-MAIN-JR-MATHS VOL-I VECTOR PRODUCT OF FOUR VECTORS NARAYANAGROUP 237 Vector triple Product : The vector product of a b and c is a vector triple Product of three vectors a,b and c . It is denoted by a b c (a b )c (a.c)b (b.c)a . This is a vector in the plane of a and b . a b c a c b a b c . . . This is a vector in the plane of b c, ( ) ( ) a b c c a b a,b ,c are non-zero vectors and ( ) ( ) & a b c a b c a c are collinear (Parallel) (or) ( ) 0 a c b Vector triple product is not associative. If a b c , , are non-zero, non-orthogonal vectors., then (a b )c a (b c) . a b c b c a c a b ( ) ( ) 0 a (b c),b (c a),c (a b) are coplanar i j k j k i k i j 0 i a i j a i k a k 2a where a is any vector a (b c ) b (c a) (a b )c 2 [ ] [ ] a b b c c a a b c Scalar Product of Four Vectors : ( ).( ) a b c d is a scalar product of four vectors. It is a dot product of the vectors a b and c d . (a b ).(c d ) a.c (b.d ) a.d (b.c) b c b d a c a d . . . . c b c d a b a d a c b d . . . . ( ). 2 2 2 2 a b a b a b a b a b . . Vector Product of Four Vectors : a b (c d ) is a vector product of four vectors. a b c d a b d c a b c d c d a b c d b a a b c d b c d a c a d b a b d c 2 a b b c c a a b c If a,b ,c are non coplanar vectors, i.e., a b c 0 then any vector r in space can be expressed as a linear combination of a,b ,c i.e., r b c r a b r c a r a b c a b c a b c a b c i.e., in the form r xa yb zc If a,b ,c and d are coplanar then a b c d 0 If a,b ,c and d are parallel vectors (or) collinear vectors, then (a b )c d 0 W.E-1: Let a i j k b i j k 2 , 2 and a unit vector c be coplanar. If c is perpendicular to a , then c is equal to Sol: Required unit vector is a a b a a b a a b a b a a a b j k . . 9 9 1 2 c j k VECTOR TRIPLE PRODUCT AND PRODUCT OF FOUR VECTORS SYNOPSIS
VECTOR PRODUCT OF FOUR VECTORS JEE-MAIN-JR-MATHS VOL-I 238 NARAYANAGROUP W.E-2: Let a i j and b i k 2 then point of intersection of the line r a b a and r b a b is Sol: We have r a b a r b a 0 r b a r b a r b a Similarly, the equation of the line r b a b can be written as r a b For the point of intersection of the above two lines, we have a b b a 1 r a b i j k 3 W.E-3:b c c a is equal to Sol : b c c a b c a c b c c a . . a b c b c c c a a b c c VECTOR TRIPLE PRODUCT 1. If a i j k b i j k c i j k , , 2 3 , then ( ) a b c 1) 2 6 2 i j k 2) 6 2 6 i j k 3) 6 2 6 i j k 4) 6 2 6 i j k 2. If a i j k b i j c i , , and ( ) , a b c a b then 1) 1 2) 0 3) -1 4) 2 3. a i j k b i j k 2 3 4 , , c i j k 4 2 3 then a b c (EAM-2000) 1) 10 2) 1 3) 2 4) 5 4. a b c b c a c a b 1) 0 2) 0 3) 1 4) a b c . 5. ( ) ( ) a b c a b c if and only if 1) ( ) 0 a c b 2) a c b ( ) 0 3) c b a ( ) 0 4) a b c 1 6. The vector ( ) a b c is perpendicular to 1) c 2) a b 3) both 1 and 2 4) b c, 7. i a i j a j k a k ( ) ( ) ( ) 1) 3a 2) 2a 3) a 4) 0 SCALAR PRODUCT OF FOUR VECTORS: 8. a i j k b i j k 2 3 , 2 4 , c i j k , d i j k then a b c d . ___ 1) 4 2) 24 3) 36 4) 4 9. If a b c b a b b c a c . . . then 1) 2 a 2) 2 b 3) 2 c 4) 0 10. a i b i a j b j a k b k 1) a b. 2) 3 . a b 3) 0 4) 2 . a b 11. If a is parallel to b c , then a b a c 1) 2 a b c. 2) 2 b a c. 3) 2 c a b. 4) 0 12. If a b, are two unit vectors such that a b 2 then the value of a b a b is 1) 1 2) 2 3) 4 4) 0 VECTOR PRODUCT OF FOUR VECTORS: 13. If a i j k b i j k 2 3 , 3 2 , c i j k d i j k 4 , 2 then a b c d 1) 24 2 i j k 2) 24i j k 3) 12 2 3 i j k 4)12 2 3 i j k 14 If four vectors a b c d , , , are coplanar, then ( ) ( ) a b c d = 1) a b c d 1) b c d a 3) c d a b 4) Null vector LEVEL - I (C.W)
JEE-MAIN-JR-MATHS VOL-I VECTOR PRODUCT OF FOUR VECTORS NARAYANAGROUP 239 15. If b c c a c 3 then b c c a a b 1) 2 2) 7 3) 9 4) 11 LEVEL-I(C.W)-KEY 01) 2 02) 2 03) 4 04) 2 05) 1 06) 3 07) 2 08) 4 09) 2 10) 4 11) 1 12) 3 13) 1 14) 4 15) 3 LEVEL-I(C.W)-HINTS 1. a c b c b a . . 2. a c b a b a c b b c a a b . . b c c a . , . 3. a c b a b c . . and 2 2 2 a i a j a k a a a 1 2 3 1 2 3 4. a b c a c b a b c . . 0 5. a b c a b c c a b c b a a c b a b c . . . . a b c c b a . . 0 a c b 0 6. Cross product of any two vectors is perpendicular to both the vectors 7. i a i i i a i a i . . a a i i . 3 2 a a a 8. . . . . a c a d b c b d 9. a c b b a b b c a b b c a c . . . . . . . 2 a c b a c . . 2 b 10. Use scalar product of four vectors formula 11. . . 2 . . . . . a a a c a b c b a a c b a b c 2 a b c b a c a . . . 0 12. 2 a b a b a b a b a b . 13. Find a b d c a b c d 14. a b d c a b c d 0 0 0 15. b c a c c 3 a b c 3 Required value 2 a b c 9 VECTOR TRIPLE PRODUCT 1. If a i j k b i j k , , c i j k then a b c 1) i j k 2) 2 2 i j 3) 3i j k 4) 2 2 i j k 2. If a i j k b i j k 2 3 , 2 and c i j k 3 2 , and a b c pi q j rk , then p q r a) -4 b) 4 c) 2 d) -2 3. If p q (2, 10, 2), (3,1,2) and r (2,1,3), then p q r ( ) a) 2 b) 4 c) 0 d) 3 4. i j k j k i k i j ( ) ( ) ( ) 1) i 2) j 3) k 4) Null vector 5. If a b c a b c where a , b and c are any three vectors such that a b. 0 , b c. 0 then a and c are 1) Perpendicular 2) Parallel 3) Inclined at an angle of 3 between them 4) Inclined at an angle of 6 between tehm 6. The vectors a b c is 1) Coplanar with b and c 2) Coplanar with a and b parallel to c 3) Coplanar with b and c , orthogonal to a 4) Coplanar with a and b , orthogonal to c 7. a i i a j j a k k ___ 1) 2a 2) 2a 3) a 4) a LEVEL - I (H.W)
VECTOR PRODUCT OF FOUR VECTORS JEE-MAIN-JR-MATHS VOL-I 240 NARAYANAGROUP SCALAR PRODUCT OF FOUR VECTORS 8. If a i j k b i j k , , c i j k d i j k , then value of a b c d . is 1) 1 2) 0 3) -2 4) -1 9. a b c d a c b d K a d b c . . . . . then the value of K is 1) 1 2) 0 3) -2 4) -1 10. b c a d c a b d a b c d . . . 1) 0 2) 1 3) 2 4) -1 11. a b c d b c a d . . . 1) 0 2) 1 3) a c. 4) a c b d . . 12. If a , b lie in a plane normal to the plane containing c and d then a b c d . 1) 4 2) 1 3) 0 4) 3 VECTOR PRODUCT OF FOUR VECTORS 13. a i j k b i j k c i j k 2 3 , 2 4 , , d i j k 3 4 2 . The value of a b c d 1) 70 28 64 i j k 2) 7 8 i j 3) 6 2 j k 4) i j k 4 14. a b c d lc md then m is 1) a b c d 2) c b d 3) b c d 4) a b c 15. If a b c 0 then a b b c c a 1) 0 2) A vector perpendicular to the plane of a ,b , c 3) A scalar quantity 4) 2 a b c LEVEL-I(H.W)-KEY 01) 2 02) 1 03) 3 04) 4 05) 2 06) 3 07) 2 08) 2 09) 4 10) 1 11) 4 12) 3 13) 1 14) 4 15) 1 LEVEL-I(H.W)-HINTS 1. a c b a b c . . 2. a c b a b c . . 3. p r q p q r . . 4. a b c a c b a b c ( ) ( . ) ( . ) 5. c a b c b a a c b a b c . . . . c b a a b c . . a c, are parallel 6. Cross product of any two vectors is perpendicular to both the vectors and a b c c a b c b a . . 7. a i i i a i i i a i a i . . a i a i . 3 2 a a a 8. . . . . a c a d b c b d 9. a c b d a d b c a c b d K a d b c . . . . . . . . K 1 10. Use scalar product of four vectors formula 11. . . . . . . a c a d b c a d b c b d 12. a b c d a b c d . 0 13. a b i j k 10 9 7 c d i j k 6 7 a b c d i j k 70 28 64 14. a b d c a b c d lc md m a b c