PDF Google Drive Downloader v1.1


Báo lỗi sự cố

Nội dung text 16 Double Integration Method.pdf

16 Double Integration Method SOLUTIONS SITUATION 1. Solving for the moment equation using the cutting plane shown, EIy ′′ = wL 2 x − wx ( x 2 ) EIy ′′ = wL 2 x − 1 2 wx 2 Solving for the general solution, EIy ′ = wL 4 x 2 − wx 3 6 + C1 EIy = wLx 3 12 − wx 4 24 + C1x + C2 From the support conditions, at x = 0, then y = 0. Also, at x = L, y = 0. From the first support condition, EI(0) = wL(0) 3 12 − w(0) 4 24 + C1 (0) + C2 → C2 = 0 From the second support condition, EI(0) = wL(L) 3 12 − w(L) 4 24 + C1L + 0 C1 = − wL 3 24 Slope equation: θ = y ′ = 1 EI ( wLx 2 4 − wx 3 6 − wL 3 24 ) Deflection equation:


θ = y ′ = 1 EI (5x 2 − 12⟨x − 3.5⟩ 2 − 595 12 ) θleft = 1 EI [5(0) 2 − 12⟨0 − 3.5⟩ 2 − 595 12 ] θleft = − 595 12EI or − 49.5833 EI ▣ 5. The rotation at the right support is the value of θ at x = 6. θ = y ′ = 1 EI (5x 2 − 12⟨x − 3.5⟩ 2 − 595 12 ) θright = 1 EI [5(6) 2 − 12⟨6 − 3.5⟩ 2 − 595 12 ] θright = 665 12EI or 55.4167 EI ▣ 6. The deflection under the load is the value of δ at x = 3.5. δ = y = 1 EI ( 5 3 x 3 − 4⟨x − 3.5⟩ 3 − 595 12 x) δP = 1 EI [ 5 3 (3.5) 3 − 4⟨3.5 − 3.5⟩ 3 − 595 12 (3.5)] δP = − 1225 12EI or − 102.0833 EI ▣ 7. Locate the maximum deflection. The maximum deflection in the beam is when θ = 0. Assuming that 0 ≤ x ≤ 3.5, θ = y ′ = 1 EI (5x 2 − 12⟨x − 3.5⟩ 2 − 595 12 ) 0 = 1 EI (5x 2 − 595 12 ) → x = 3.149074 m Since 3.149 m < 3.5 m, then the assumption is correct. The maximum deflection is the value of δ at the computed x = 3.149074. δ = y = 1 EI ( 5 3 x 3 − 4⟨x − 3.5⟩ 3 − 595 12 x) δmaximum = 1 EI [ 5 3 (3.149) 3 − 595 12 (3.149)] δmaximum = − 104.0944 EI

Tài liệu liên quan

x
Báo cáo lỗi download
Nội dung báo cáo



Chất lượng file Download bị lỗi:
Họ tên:
Email:
Bình luận
Trong quá trình tải gặp lỗi, sự cố,.. hoặc có thắc mắc gì vui lòng để lại bình luận dưới đây. Xin cảm ơn.