Nội dung text CĐ15. Số nguyên tố - hợp số.Image.Marked.pdf
Chúc các em chăm ngoan – học giỏi !! Trang 1 CHUYÊN ĐỀ SỐ NGUYÊN TỐ - HỢP SỐ I. Lí Thuyết 1. Ước và bội: Nếu thì a la a b bội của b và b là ước của a. 2. Số nguyờn tố Định nghĩa a) Số nguyên tố là những số tự nhiên lớn hơn 1, chỉ có 2 ước số là 1 và chính nó. Ví dụ: 2, 3, 5, 7 11, 13,17, 19.... b) Hợp số là số tự nhiên lớn hơn 1 và có nhiều hơn 2 ước. Ví dụ: 4 có 3 ước số: 1 ; 2 và 4 nên 4 là hợp số. c) Các số 0 và 1 không phải là só nguyên tố cũng không phải là hợp số d) Bất kỳ số tự nhiên lớn hơn 1 nào cũng có ít nhất một ước số nguyên tố Một số định lý cơ bản Định lý 1: Dãy số nguyên tố là dãy số vô hạn Chứng minh: Giả sử chỉ có hữu hạn số nguyên tố là p1; p2; p3; ....pn. trong đó pn là số lớn nhất trong các nguyên tố. Xét số N = p1 p2 ...pn +1 thì N chia cho mỗi số nguyên tố pi (1 i n) đều dư 1 (1) Mặt khác N là một hợp số (vì nó lớn hơn số nguyên tố lớn nhất là pn) do đó N phải có một ước nguyên tố nào đó, tức là N chia hết cho một trong các số pi (1 i n). (2) Ta thấy (2) mâu thuẫn (1). Vậy không thể có hữu hạn số nguyên tố. Định lý 2: Mọi số tự nhiên lớn hơn 1 đều phân tích được ra thừa số nguyên tố một cách duy nhất (không kể thứ tự các thừa số). Chứng minh: Mọi số tự nhiên lớn hơn 1 đều phân tích được ra thừa số nguyên tố: Thật vậy: giả sử điều khẳng định trên là đúng với mọi số m thoả mãn: 1< m < n ta chứng minh điều đó đúng với mọi n. Nếu n là nguyên tố, ta có điều phải chứng minh. Nếu n là hợp số, theo định nghĩa hợp số, ta có: n = a.b (với a, b < n)
Chúc các em chăm ngoan – học giỏi !! Trang 2 Theo giả thiết quy nạp: a và b là tích các thừa số nhỏ hơn n nên n là tích cuả các thừa số nguyên tố. Sự phân tích là duy nhất: Giả sử mọi số m < n đều phân tích được ra thừa số nguyên tố một cách duy nhất, ta chứng minh điều đó đúng với n: Nếu n là số nguyên tố thì ta được điều phải chứng minh. Nếu n là hợp số: Giả sử có 2 cách phân tích n ra thừa số nguyên tố khác nhau: n = p.q.r.... n = p’ .q’ .r’ .... Trong đó p, q, r ..... và p’ , q’ , r’ .... là các số nguyên tố và không có số nguyên tố nào cũng có mặt trong cả hai phân tích đó (vì nếu có số thoả mãn điều kiện như trên, ta có thể chia n cho số đó lúc đó thường sẽ nhỏ hơn n, thương này có hai cách phân tích ra thừa số nguyên tố khác nhau, trái với giả thiết của quy nạp). Không mất tính tổng quát, ta có thể giả thiết p và p’ lần lượt là các số nguyên tố nhỏ nhất trong phân tích thứ nhất và thứ hai. Vì n là hợp số nên n’ > p2 và n > p’2 Do p = p’ => n > p.p’ Xét m = n - pp’ < n được phân tích ra thừa số nguyên tố một cách duy nhất ta thấy: p | n => p | n – pp’ hay p | m p ’ | n => p’ | n – pp’ hay p’ | m Khi phân tích ra thừa số nguyên tố ta có: m = n - pp’ = pp’ . P.Q ... với P, Q P ( P là tập các số nguyên tố) pp’ | n = pp’ | p.q.r ... => p’ | q.r ... => p’ là ước nguyên tố của q.r ... Mà p’ không trùng với một thừa số nào trong q,r ... (điều này trái với gỉa thiết quy nạp là một số nhỏ hơn n đều phân tích được ra thừa số nguyên tố một cách duy nhất). Vậy, điều giả sử không đúng, n không thể là hợp số mà n phải là số nguyên tố (Định lý được chứng minh). Cách nhận biết một số nguyên tố Cách 1: Chia số đó lần lượt cho các nguyên tố từ nhỏ đến lớn: 2; 3; 5; 7... Nếu có một phép chia hết thì số đó không nguyên tố. Nếu thực hiện phép chia cho đến lúc thương số nhỏ hơn số chia mà các phép chia vẫn có số dư thì số đó là nguyên tố. Cách 2: Một số có hai ước số lớn hơn 1 thì số đó không phải là số nguyên tố