PDF Google Drive Downloader v1.1


Report a problem

Content text Tóm tắt lý thuyết toán.pdf

NGUYỄN THẾ TUẤN VŨ Sổ tay TÓM TẮT LÝ THUYẾT TOÁN Tóm tắt lý thuyết thi THPT và các kì thi riêng. Hệ thống các công thức giải nhanh. Phương pháp giải các bài tập cơ bản. x y O a b y = f(x)

Mục lục 2 Nguyễn Thế Tuấn Vũ – H 0935 185 995 30 Chương 5 Dãy số. Cấp số cộng và cấp số nhân 1 Dãy số . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 2 Cấp số cộng và cấp số nhân . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 33 Chương 6 Giới hạn. Hàm số liên tục 1 Giới hạn của dãy số . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 2 Giới hạn của hàm số . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 3 Hàm số liên tục . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 40 Chương 7 Hàm số mũ và hàm số logarit 1 Lũy thừa với số mũ thực . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 2 Logarit. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 3 Hàm số mũ và hàm số logarit. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 4 Bài toán lãi suất - tăng trưởng . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 5 Phương trình, bất phương trình mũ và logarit. . . . . . . . . . . . . 44 47 Chương 8 Đạo hàm và ứng dụng của đạo hàm 1 Định nghĩa của đạo hàm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 2 Tính đơn điệu và cực trị của hàm số . . . . . . . . . . . . . . . . . . . . . . 50 3 Giá trị lớn nhất và giá trị nhỏ nhất của hàm số . . . . . . . . . . . 59 4 Đường tiệm cận của đồ thị hàm số. . . . . . . . . . . . . . . . . . . . . . . . 60 5 Khảo sát sự biến thiên và vẽ đồ thị hàm số . . . . . . . . . . . . . . . 62
Mục lục Nguyễn Thế Tuấn Vũ – H 0935 185 995 3 73 Chương 9 Nguyên hàm và Tích phân 1 Nguyên hàm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73 2 Tích phân. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75 3 Ứng dụng hình học của tích phân. . . . . . . . . . . . . . . . . . . . . . . . . 77 86 Chương 10 Thống kê 1 Các đặc trưng của mẫu số liệu không ghép nhóm . . . . . . . . . 86 2 Các đặc trưng của mẫu số liệu ghép nhóm . . . . . . . . . . . . . . . . 91 96 Chương 11 Tổ hợp - Xác suất 1 Đại số tổ hợp . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96 2 Biến cố và định nghĩa cổ điển của xác suất . . . . . . . . . . . . . . . 98 3 Xác suất có điều kiện . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100 4 Biến ngẫu nhiên rời rạc. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101 105 Chương 12 Biến ngẫu nhiên rời rạc 1 Một số khái niệm cơ bản . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105 2 Đường đi Euler và đường đi Hamilton . . . . . . . . . . . . . . . . . . . . 107 3 Bài toán tìm đường đi tối ưu . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

Related document

x
Report download errors
Report content



Download file quality is faulty:
Full name:
Email:
Comment
If you encounter an error, problem, .. or have any questions during the download process, please leave a comment below. Thank you.