PDF Google Drive Downloader v1.1


Report a problem

Content text Bài 3-ĐỊnh lí Viète-ĐỀ BÀI.doc

Đại số 9 - Chương 6: Hàm số y = ax 2 và phương trình bậc hai một ẩn – Tự luận có lời giải Chân Trời Sáng Tạo Trang 1 BÀI 3 ĐỊNH LÍ VIÈTE 1. Định lí Viète Nếu 12,xx là hai nghiệm của phương trình 20 (0)axbxca thì: 12 b xx a và 12.c xx a Nhận xét: Xét phương trình bậc hai 200axbxca  Nếu 0abc thì phương trình có một nghiệm là 11x , nghiệm còn lại là 2 c x a  Nếu 0abc thì phương trình có một nghiệm là 11x , nghiệm còn lại là 2 c x a 2. Tìm hai số khi biết tổng và tích của chúng Nếu hai số có tổng bằng S và tích bằng P thì hai số đó là nghiệm của phương trình: 2 0xSxP Điều kiện để có hai số đó là 240SP 3. Xác định dấu của nghiệm Phương trình 20(0)axbxca có hai nghiệm 12,xx  Nếu 120c Pxx a thì phương trình có hai nghiệm trái dấu  Nếu 120c Pxx a và 120Sxx thì phương trình có hai nghiệm dương  Nếu 120c Pxx a và 120Sxx thì phương trình có hai nghiệm âm Chú ý: Để áp dụng hệ thức Viète phải chú ý đến điều kiện phương trình là phương trình bậc hai có nghiệm 0;0a
Đại số 9 - Chương 6: Hàm số y = ax 2 và phương trình bậc hai một ẩn – Tự luận có lời giải Chân Trời Sáng Tạo Trang 2 DẠNG 1 KHÔNG GIẢI PHƯƠNG TRÌNH, TÍNH GIÁ TRỊ BIỂU THỨC ĐỐI XỨNG Phương pháp: Ta thực hiện theo các bước sau: Bước 1: Tìm điều kiện để phương trình có nghiệm 12,xx là 0 0 a    Từ đó áp dụng hệ thức Viète ta có: 1212;.bc SxxPxx aa   Bước 2: Biến đổi biểu thức đối xứng giữa các nghiệm của đề bài theo tổng 12xx và tích 12xx Sau đó áp dụng bước 1 Chú ý: Một số biểu thức đối xứng giữa các nghiệm thường gặp là  2222()22abababSP  222()()44abababSP  22()44abababSP  11abS ababP    3333()3()3ababababSSP  4422222222()2(2)2abababSPP Bài 1. Biết phương trình 22960xx có hai nghiệm là 12,xx . Không giải phương trình, hãy tính tổng 12xx và tích 12xx . Bài 2. Giả sử 12,xx là hai nghiệm của phương trình 2530xx . Không giải phương trình hãy tính giá trị của các biểu thức sau a) 22 12Axx b) 33 12Bxx c) 44 12 11 C xx d) 12Dxx Bài 3. Cho phương trình 23520xx . Với 12,xx là nghiệm của phương trình, không giải phương trình hãy tính giá trị của các biểu thức sau a) 12 12 11 Mxx xx b) 12 11 33N xx  c) 12 22 12 33xx P xx   c) 12 2122 xx Q xx 
Đại số 9 - Chương 6: Hàm số y = ax 2 và phương trình bậc hai một ẩn – Tự luận có lời giải Chân Trời Sáng Tạo Trang 3 BÀI TẬP RÈN LUYỆN Bài 4. Biết rằng phương trình 230xx có hai nghiệm phân biệt 12,xx . Tính giá trị của biểu thức 22 12Cxx . Bài 5. Cho phương trình: 22430xx có hai nghiệm là 12;xx . Không giải phương trình, hãy tính giá trị của biểu thức: 212Axx . Bài 6. Gọi 12,xx là hai nghiệm của phương trình : 2470xx . Tính giá trị của biểu thức 12 21 2xx T xx Bài 7. Cho phương trình 2540xx . Gọi 12,xx là hai nghiệm của phương trình. Không giải phương trình, hãy tính giá trị biểu thức 22 12126Qxxxx . Bài 8. Cho phương trình 2 30xx có hai nghiệm 12,xx , giá trị của biểu thức 12 125 xx A xx   bằng bao nhiêu? Bài 9. Cho phương trình 2310xx có hai nghiệm phân biệt x 1 , x 2 . Không giải phương trình, hãy tính giá trị của biểu thức 12 22 1212 3xx T xxxx    . Bài 10. Cho phương trình 21240xx có hai nghiệm dương phân biệt 12,.xx Không giải phương trình, hãy tính giá trị của biểu thức 22 12 12 xx T xx    Bài 11. Giả sử 12,xx là hai nghiệm của phương trình: 2510xx . Không giải phương trình hãy tính giá trị của các biểu thức sau a) 22 1212Axxxx b) 44 12Bxx c) 33 12 11 C xx d) 12Dxx Bài 12. Gọi 12,xx là hai nghiệm của phương trình 2310xx . Tính giá trị của các biểu thức sau a) 22 12Axx b) 33 11221(1)()Bxxxxx c) 22 12 11 C xx Bài 13. Cho phương trình 210(1)xmx ( x là ẩn số) a) Chứng minh phương trình (1) luôn có hai nghiệm trái dấu b) Gọi 12,xx là các nghiệm của phương trình (1). Tính giá trị của biểu thức 22 1122 12 11xxxx A xx   Bài 14. Cho phương trình 22(1)220xmxm ( x là ẩn số ) (1) a) Chứng minh rằng phương trình (1) luôn có hai nghiệm phân biệt
Đại số 9 - Chương 6: Hàm số y = ax 2 và phương trình bậc hai một ẩn – Tự luận có lời giải Chân Trời Sáng Tạo Trang 4 b) Gọi hai nghiệm của (1) là 12,xx . Tính theo m giá trị của biểu thức 2 122(1)22Axmxm Bài 15. Gọi 12,xx là các nghiệm của phương trình 2202420xx và 34,xx là các nghiệm của phương trình 2202520xx . Tính 13231424()()()()Axxxxxxxx Bài 16. Gọi 12,xx là hai nghiệm của phương trình 210.xx Không giải phương trình. chứng minh rằng 12()()PxPx với ()33325Pxxx Bài 17. Cho phương trình 222250xmxm ( m là tham số) a) Tìm điều kiện của m để phương trình có hai nghiệm phân biệt 12,xx b) Với m vừa tìm được ở trên, tìm biểu thức liên hệ giữa 12,xx không phụ thuộc vào m Bài 18. Cho phương trình 2220xmxm . Với giá trị nào của tham số m thì phương trình có hai nghiệm phân biệt 12,xx ? Khi đó, hãy tìm biểu thức liên hệ giữa 12,xx không phụ thuộc vào tham số m .

Related document

x
Report download errors
Report content



Download file quality is faulty:
Full name:
Email:
Comment
If you encounter an error, problem, .. or have any questions during the download process, please leave a comment below. Thank you.