PDF Google Drive Downloader v1.1


Report a problem

Content text 8. P2C8. Phy.-2nd-Paper-For-FRB-2024_With Solve_Ridoy-23.5.24.pdf

AvaywbK c`v_©weÁv‡bi m~Pbv  Final Revision Batch 1 Aóg Aa ̈vq AvaywbK c`v_©weÁv‡bi m~Pbv Introduction of Modern Physics Topicwise CQ Trend Analysis UwcK 2016 2017 2018 2019 2021 2022 2023 †gvU Av‡cwÿK ZË¡ Abymv‡i: mgq m¤úamviY, •`N© ̈ ms‡KvPb, fi e„w× 2 5 Ñ 3 10 5 3 28 fi kw3i m¤úK© Ñ 1 Ñ 1 Ñ Ñ 1 3 d‡UvB‡jw±aK wμqv 3 2 Ñ 4 Ñ 4 14 27 K¤úU‡bi cÖfve Ñ 1 Ñ Ñ Ñ Ñ Ñ 1 * we.`a.: 2020 mv‡j GBPGmwm cixÿv AbywôZ nqwb| weMZ mv‡j †ev‡W© Avmv m„Rbkxj cÖkœ 1| DÏxcKwU jÿ ̈ Ki: [Xv. †ev. 23] 3 V B 2550 A o A B cv‡Zi Kvh© A‡cÿK 2.2eV (K) ARo cÖm1⁄2 KvVv‡gv Kv‡K e‡j? (L) M ̈v‡jwjI I j‡iÄ iƒcvšÍi KLb Awfbœ n‡e e ̈vL ̈v Ki| (M) B cv‡Zi m~Pb Zi1⁄2‣`N© ̈ wbY©q Ki| mgvavb: Kvh© A‡cÿK, W = hc 0  0 = hc W = 6.63  10–34  3  108 2.2  1.6  10–19  0 = 5.651  10–7 m  B cv‡Zi m~Pb Zi1⁄2‣`N© ̈ 5.651  10–7 m| (Ans.) (N) DÏxcK Abyhvqx 3 V wefe cÖ‡qv‡M d‡UvKv‡i›U cvIqv hv‡e wKbvÑ MvwYwZKfv‡e hvPvB Ki| mgvavb : Av‡jvK Zwor mgxKiY, E = W + Kmax  hc  = W + eV0  V0 = 1 e    hc  – W = 1 1.6  10–19      6.63  10–34  3  108 2550  10–10 – 2.2  1.6  10–19  V0 = 2.675 V < V A_©vr 2.675 V cÖ‡qv‡MB d‡UvB‡jKUa‡bi MwZ †_‡g hv‡e| ZvB 3V wefe cÖ‡qv‡M d‡UvKv‡i›U cvIqv hv‡e bv| (Ans.) 2| Av‡jvK Zwor wμqv cixÿvq †mvwWqvg avZe cv‡Zi Dci 0.714  1015 Hz K¤úv‡1⁄4i Av‡jv AvcwZZ Ki‡j wbe„wË wefe 0.65 V nq| Avevi 3.1  102 nm Zi1⁄2 •`‡N© ̈i Av‡jv †dj‡j wbe„wË wefe 1.69 V nq| [iv. †ev. 23] (K) Zwor d¬v· Kv‡K e‡j? (L) cwievnxi †iv‡ai Dci ZvcgvÎvi wbf©ikxjZv †jLwP‡Îi mvnv‡h ̈ e ̈vL ̈v K‡iv| (M) cixÿ‡Y cÖvß DcvË n‡Z m~Pb K¤úv1⁄4 wbY©q K‡iv| mgvavb: Av‡jvK Zwor mgxKiY, E = W + Kmax  hf = hf0 + eV0  h(f – f0) = eV0  f0 = f – eV0 h = 0.714  1015 –     1.6  10–19  0.65 6.63  10–34  f0 = 5.571  1014 Hz  m~Pb K¤úv1⁄4 5.571  1014 Hz. (Ans.) (N) Dfq †ÿ‡Î B‡jKUa‡bi m‡e©v”P †eM mgvb bqÑ MvwYwZK e ̈vL ̈v K‡iv| mgvavb: Zwor wμqvq, Kmax = eV0  1 2 mv 2 max = eV0  vmax = 2 eV0 m 1g †ÿ‡Î, v1 = 2eV01 me = 2  1.6  10–19  0.65 9.11  10–31  v1 = 477828.972 ms–1 2q †ÿ‡Î, v2 = 2eV02 me = 2  1.6  10–19  1.69 9.11  10–31  v1 = 770476.067 ms–1 ∵ v1  v2 A_©vr Dfq †ÿ‡Î m‡e©v”P †eM mgvb bq| (Ans.)
2  HSC Physics 2nd Paper Chapter-8 3| GKwU avZzi Dci 3000 A o Ges 4400 A o Zi1⁄2 •`N© ̈wewkó `ywU Zwor Pz¤^Kxq Zi1⁄2 Avjv`vfv‡e †djv n‡jv| d‡j `ywU †ÿ‡ÎB avZe c„ô n‡Z B‡jKUab wbM©Z n‡jv| avZzwUi m~Pb Zi1⁄2 •`N© ̈ 5454 A o | [Kz. †ev. 23] (K) K...òe ̄‧ Kv‡K e‡j? (L) e ̄‧i †eM e„w× †c‡j •`N© ̈ ms‡KvPb e„w× cvqÑ e ̈vL ̈v K‡iv| (M) DÏxc‡K avZzwUi Kvh©v‡cÿK MeV GK‡K wbY©q K‡iv| mgvavb: Kvh©v‡cÿK, W = hc 0 = 6.63  10–34  3  108 5454  10–10  W = 3.647  10–19 1.6  10–19 eV = 2.279  10–6 MeV  avZzwUi Kvh©v‡cÿK 2.279  10–6 MeV| (Ans.) (N) avZzi Dci AvcwZZ Av‡jvi Zi1⁄2‣`N© ̈ e„w× †c‡j wbe„wË wefe K‡gÑ DÏxc‡Ki Av‡jv‡K MvwYwZKfv‡e we‡kølY K‡iv| mgvavb: Av‡jvK Zwor mgxKiY, E = W + Kmax  hc  = hc 0 + eV0  V0 = 1 e    hc  – hc 0  = 3000 A  n‡j, V01 = hc e     1 3000  10–10 – 1 5454  10–10 = 6.63  10–34  3  108 1.6  10–19  1.5  106 V  V01 = 1.864 V  = 4400 A  n‡j, V02 = hc e     1 4400  10–10 – 1 5454  10–10 = 6.63  10–34  3  108 1.6  10–19  4.392  105 V  V02 = 0.546 V ∵ V01 > V02 A_©vr Av‡jvi Zi1⁄2 •`N© ̈ e„w× †c‡j wbe„wË wefe K‡g| (Ans.) 4| C B A Emax f(Hz) O 3×1015 6×1015 9×1015 wP‡Î d‡UvZwor wμqvi †ÿ‡Î avZe cv‡Zi Dci AvcwZZ Av‡jvi K¤úv1⁄4 ebvg avZe cvZ †_‡K wbM©Z B‡j±a‡bi MwZkw3 †`Lv‡bv n‡q‡Q| [h. †ev. 23] (K) †Wvwcs Kx? (L) wbDwK¬qvi wdkvb I wdDkb wewμqvi g‡a ̈ †KvbwU AwaK wbivc`? (M) DÏxc‡Ki B we›`y‡Z m‡e©v”P MwZkw3 wbY©q Ki| mgvavb: E = W + Kmax  hfB = hfA + Emax(B)  Emax(B) = 6.63  10–34 (6  1015 – 3  1015) = 1.989  10 –18 J  B we›`y‡Z m‡e©v”P MwZkw3 1.989  10–18 J| (Ans.) (N) B I C we›`y‡Z wbe„wË wef‡ei cv_©K ̈ MvwYwZKfv‡e we‡kølY Ki| mgvavb: B we›`y‡Z, Emax(B) = eV0B  V0B = 1.989  10–18 1.6  10–19  V0B = 12.431 V C we›`y‡Z, EC = W + Emax(C)  hfC = hfA + eV0C  V0C = h e (fC – fA) = 6.63  10–34 1.6  10–19  (9 – 3)  1015  V0C = 24.863 V  V0 = V0C – V0B = 24.863 – 12.431  V0 = 12.432 V A_©vr wbe„wË wef‡ei cv_©K ̈ 12.432 V| (Ans.) 5| GKRb gnvKvkPvix 30 eQi eq‡m 1.8  108 ms–1 †e‡M MwZkxj gnvk~b ̈hv‡b P‡o Qvqvc_ AbymÜv‡b †M‡jb Ges c„w_exi wn‡m‡e 30 eQi ci wd‡i G‡jb| H gnvk~b ̈hv‡bi •`N© ̈ 120 m Ges fi 2200 kg wQj| [P. †ev. 23] (K) m~Pb K¤úv1⁄4 Kx? (L) E = mc2 mgxKiYwUi A_© e ̈vL ̈v Ki| (M) DÏxc‡K ewY©Z gnvk~b ̈Pvix c„w_ex‡Z wd‡i G‡j Zuvi Kv‡Q Zvi eqm KZ n‡e? mgvavb: cÖK...Z mgq = t0 n‡j, t = t0 1 – v 2 c 2  30 = t0 1 –     1.8  108 3  108 2  t0 = 24 years  gnvKvkPvixi wb‡Ri Kv‡Q Zvi eZ©gvb eqm, = (30 + 24) years = 54 years  gnvk~b ̈Pvix c„w_ex‡Z wd‡i Gj Zuvi Kv‡Q Zvi eqm 54 eQi| (Ans.)
AvaywbK c`v_©weÁv‡bi m~Pbv  Final Revision Batch 3 (N) DÏxc‡Ki Av‡jv‡K MwZkxj Ae ̄ vq gnvk~b ̈hv‡bi •`N© ̈ I fi Ges w ̄ i Ae ̄ vq •`N© ̈ I f‡ii cv_©K ̈ wK n‡e? †Zvgvi DËi MvwYwZK we‡køl‡Y `vI| mgvavb: MwZkxj •`N© ̈, L = L0 1 – v 2 c 2 = 120 1 –     1.8  108 3  108 2 m  L = 96 m  L  L0 MwZkxj fi, m = m0 1 – v 2 c 2 = 2200 1 –     1.8  108 3  108 2 kg  m = 2750 kg  m  m0 A_©vr MwZkxj Ae ̄’vq gnvk~b ̈hv‡bi •`N© ̈ I fi Ges w ̄’i Ae ̄’vq •`N© ̈ I f‡ii cv_©K ̈ n‡e| (Ans.) 6| bvwenv d‡UvZwor wμqv cixÿv Kivi Rb ̈ 3 eV Kvh©v‡cÿ‡Ki GKLÐ avZz wbj| avZzwU‡Z 280 nm Zi1⁄2‣`‡N© ̈i Av‡jv †djv n‡jv| †m Zvi evÜex wbjv‡K ejj, avZzwU †_‡K 7.11 × 105 m/s †e‡Mi B‡jKUab wbM©Z nq| [e. †ev. 23] (K) Kvh©v‡cÿK Kv‡K e‡j? (L) Av‡jvi J3⁄4¡j ̈ evo‡j d‡Uv Kv‡i›U ev‡o †Kb? e ̈vL ̈v Ki| (M) cixÿ‡Y e ̈eüZ Av‡jvi m~Pb Zi1⁄2‣`N© ̈ KZ? mgvavb: Kvh©v‡cÿK, W = hc 0  0 = 6.63  10–34  3  108 3  1.6  10–19  0 = 4.144  10–7 m  cixÿ‡Y e ̈eüZ Av‡jvi m~Pb Zi1⁄2 •`N© ̈ 4.144  10–7 m| (Ans.) (N) bvwenvi Dw3i h_v_©Zv MvwYwZKfv‡e we‡kølY Ki| mgvavb: Av‡jvi Zwor mgxKiY, E = W + Kmax  1 2 mv 2 max = hc  – W  1 2  9.11  10–31  v 2 max = 6.63  10–34  3  108 280  10–9 – 3  1.6  10–19  vmax = 2  2.304  10–19 9.11  10–31  vmax = 7.111  105 ms–1 A_©vr avZzwU n‡Z wbM©Z B‡jKUa‡bi †eM 7.111  105 ms–1 Gi mgvb ev Kg n‡e| bvwenvi Dw3wU h_v©_| (Ans.) 7| ivBmv Av‡jv Zwor wμqv cixÿvq cUvwkqvg avZzi Dci h_vμ‡g 4300 A o I 5600 A o Zi1⁄2‣`‡N© ̈i Av‡jv AvcwZZ Kij| cvUvwkqv‡gi Kvh© A‡cÿK 2.1 eV| [wm. †ev. 23] (K) Kvj `xN©vqb Kx? (L) G· iwk¥ b‡j Uv‡M©U wn‡m‡e D”P Mjbv1⁄4wewkó avZz e ̈envi Kiv nq †Kb? (M) cUvwkqv‡gi m~Pb Zi1⁄2‣`N© ̈ wbY©q K‡iv| mgvavb: Kvh©v‡cÿK, W = hc 0  0 = 6.63  10–34  3  108 2.1  1.6  10–19 m  0 =5.92  10–7 m  cUvwkqv‡gi m~Pb Zi1⁄2 •`N© ̈ 5.92  10–7 m| (Ans.) (N) ivBmvi cixÿvq AvcwZZ Av‡jvi Zi1⁄2‣`N© ̈ cwieZ©‡bi d‡j wbe„wË wef‡ei Kxiƒc cwieZ©b n‡e? MvwYwZKfv‡e we‡kølY K‡iv| mgvavb: Av‡jvK Zwor mgxKiY, E = W + Kmax  eV0 = hc  – W  = 4300 A  n‡j, V01 = 1 1.6  10–19     6.63  10–34  3  108 4300  10–10 – 2.1  1.6  10–19 V  V01 = 0.791 V  = 5600 A  n‡j, V02 = 1 1.6  10–19     6.63  10–34  3  108 5600  10–10 – 2.1  1.6  10–19 V  V02 = 0.12 V  V01 > V02 A_©vr AvcwZZ Av‡jvi Zi1⁄2 •`N© ̈ †ewk n‡j wbe„wË wefe Kg‡e| (Ans.) 8| GKwU KYv (P) Gi w ̄’i fi 2 × 10–20 kg| KYvwU 0.91c †e‡M MwZkxj| Avi GKwU KYv (Q) hvi w ̄’i fi 1.6 × 10–19 kg| [w`. †ev. 23] (K) X-iwk¥ Kx? (L) gvB‡Kjmb †gvi‡j cixÿvi djvdj e ̈vL ̈v Ki| (M) P-KYvwUi Av‡cwÿK ZË¡xq MwZkw3 wbY©q Ki| mgvavb: MwZkw3, E = (m – m0) c2 =      m0  1 – v 2 c 2 – m0 c 2 =       1 1 –     0.91 c c 2 – 1  2  10–20  (3  108 ) 2  E = 2.541  10–3 J  P-KYvwUi Av‡cwÿK ZË¡xq MwZkw3 2.541  10–3 J| (Ans.)
4  HSC Physics 2nd Paper Chapter-8 (N) Av‡cwÿK ZË¡vbyhvqx P KYvwUi fi Q KYvi w ̄ i f‡ii mgvb nIqv m¤¢eÑ MvwYwZKfv‡e hvPvB Ki| mgvavb: awi, P KYvwUi fi Q KYvi w ̄’i f‡ii mgvb n‡Z G‡K v †e‡M MwZkxj n‡Z n‡e|  mQ = m0 1 – v 2 c 2 mQ = 1.6  10–19 kg m0 = 2  10–20 kg  1 – v 2 c 2 =    m0 mQ 2      v c 2 = 1 –    m0 mQ 2  v = c 1 –    m0  mQ 2 = 3  108 1 –     2  10–20 1.6  10–19 2 ms–1  v = 2.976  108 ms –1 A_©vr Av‡cwÿK ZË¡vbyhvqx P KYvwUi †eM 2.976  108 ms–1 n‡j Gi fi Q KYvi w ̄’i f‡ii mgvb nIqv m¤¢e| (Ans.) 9| cUvwkqv‡gi Kvh© A‡cÿK 2 eV| cUvwkqv‡gi GKwU cv‡Zi cÖ_‡g 3000 A  Gi Av‡jv AvcwZZ n‡jv| cieZ©x‡Z 4500 A  Gi Av‡jv †djv n‡jv : h = 6.63  10–34 J-s. [g. †ev. 23] (K) Kvj `xN©vqb Kv‡K e‡j? (L) Pjgvb e ̄‧i •`N© ̈ KLbI k~b ̈ nq bv †Kb? e ̈vL ̈v K‡iv| (M) 1g †ÿ‡Î wbtm„Z B‡jKUa‡bi MwZkw3 wbY©q K‡iv| mgvavb: Av‡jvK Zwor mgxKiY, E = W + Kmax  Kmax = hc  – W = 6.63  10–34  3  108 3000  10–10 – 2  1.6  10–19  Kmax = 3.43  10–19 J  1g †ÿ‡Î wbtm„Z B‡jKUa‡bi MwZkw3 3.43  10–19 J| (Ans.) (N) ÒGKB avZzi Dci AvcwZZ Av‡jvi Zi1⁄2‣`N© ̈ evov‡j wefe K‡g hvqÓÑ DÏxc‡Ki Av‡jv‡K MvwYwZKfv‡e hvPvB Ki| mgvavb: 1g †ÿ‡Î, Kmax = eV01  V01 = 3.43  10–19 1.6  10–19 V  V01 = 2.144 V 2q †ÿ‡Î, Kmax = E – W  eV02 = hc  – W  V02 = 1 1.6  10–19      6.63  10–34  3  108 4500  10–10 – 2  1.6  10–19 V  V02 = 0.763 V  V01 > V02 A_©vr ÔGKB avZzi Dci AvcwZZ Av‡jvi Zi1⁄2 •`N© ̈ evov‡j wefe K‡g hvqÕÑ Dw3wU h_v_©| (Ans.) 10| Abb ̈v wmwRqvg avZzi cv‡Z 4.5  10–7 m Zi1⁄2‣`‡N© ̈i Av‡jv AvcwZZ K‡i d‡Uv Zwor wμqvi cixÿv cwiPvjbv Ki‡Q| †m wbe„wË wefe †c‡jv 1.5 V| cieZ©x‡Z 5.5  10–7 m Zi1⁄2‣`‡N© ̈i meyR Av‡jv e ̈envi K‡i| [†`qv Av‡Q, B‡jKUa‡bi fi = 9.1  10–31 kg] [Xv. †ev. 22] (K) Ro cÖm1⁄2 KvVv‡gv Kv‡K e‡j? (L) †Kv‡bv e ̄‧i fi KL‡bv Amxg n‡Z cv‡i bv †Kb? e ̈vL ̈v Ki| (M) DÏxcK Abymv‡i d‡UvB‡jKUa‡bi m‡e©v”P MwZ‡eM wbY©q Ki| mgvavb: m‡e©v”P MwZ‡eM, vmax = 2eV0 m = 2  1.6  10–19  1.5 9.11  10–31  vmax = 7.259  105 ms–1  d‡UvB‡jKUa‡bi m‡e©v”P MwZ‡eM vmax = 7.259  105 ms –1 | (Ans.) (N) meyR Av‡jv e ̈envi Kivq d‡UvZwor cÖevn NU‡e wKbv? MvwYwZK we‡køl‡Yi gva ̈‡g †`LvI| mgvavb: Av‡jvK Zwor mgxKiY, E = W + Kmax  hc 1 = hc 0 + eV0  hc    1 1 – 1 0 = eV0  1 4.5  10–7 – 1 0 = 1.6  10–19  1.5 6.63  10–34  3  108  0 = 9.847  10–7 m ∵ Green(5.5  10–7 m) < 0 (m~Pb Zi1⁄2 •`N© ̈)  meyR Av‡jv e ̈envi Kivq d‡Uv Zwor cÖevn NU‡e| (Ans.) 11| [iv. †ev. 22] K Kmax (1.4eV) 8.5  1014 Hz f Øv`k †kÖwYi weÁv‡bi QvÎx wgbv cixÿvMv‡i d‡UvZwor wμqv cÖ`k©b K‡i Zvi cÖvß djvdj n‡Z D‡jøwLZ MÖvdwU A1⁄4b Ki‡jv| cixÿvMv‡i 1.5 volt Gi GKwU e ̈vUvix Av‡Q| (K) Av‡cwÿKZvi cÖ_g ̄^xKvh© wee„Z Ki| (L) wbDwK¬qvi wdkb wewμqv `aæZ nv‡i e„w× cvq †Kb? e ̈vL ̈v Ki| [Aa ̈vq-9] (M) m~Pb Zi1⁄2‣`N© ̈ wbY©q Ki| mgvavb: E = W + Kmax  hc 0 = hf – Kmax  0 = 6.63  10–34  3  108 6.63  10–34  8.5  1014 – 1.4  1.6  10–19 m  0 = 5.858  10–7 m m~Pb Zi1⁄2 •`N© ̈ 5.858  10–7 m. (Ans.)

Related document

x
Report download errors
Report content



Download file quality is faulty:
Full name:
Email:
Comment
If you encounter an error, problem, .. or have any questions during the download process, please leave a comment below. Thank you.