PDF Google Drive Downloader v1.1


Report a problem

Content text Chuyên đề 10. VẼ HÌNH PHỤ ĐỂ GIẢI TOÁN TRONG CHƯƠNG ĐƯỜNG TRÒN.doc

Chuyên đề 10. VẼ HÌNH PHỤ ĐỂ GIẢI TOÁN TRONG CHƯƠNG ĐƯỜNG TRÒN A. Đặt vấn đề Có nhiều bài toán trong chương đường tròn, muốn giải được ta phải vẽ thêm hình phụ. Vẽ hình phụ để tạo điều kiện vận dụng các định lí trong chương này. Có nhiều cách vẽ hình phụ. 1. Vẽ đường kính vuông góc với một dây Nếu bài toán yêu cầu so sánh độ dài của hai dây, ta có thể so sánh khoảng cách từ tâm đến hai dây. Khi đó ta vẽ đường kính vuông góc với mỗi dây để so sánh hai khoảng cách. Để tính toán độ dài của một dây ta vẽ đường kính vuông góc với dây đó rồi dùng định lí Py-ta-go tính độ dài của một nửa dây, từ đó suy ra độ dài của cả dây. 2. Vẽ bán kính của đường tròn đi qua tiếp điểm Các bài toán có tiếp tuyến của đường tròn ta thường vẽ thêm bán kính đi qua tiếp điểm. Khi đó bán kính này vuông góc với tiếp tuyến. 3. Vẽ tiếp tuyến chung tại tiếp điểm của hai đường tròn tiếp xúc Nếu bài toán có hai đường tròn tiếp xúc ta có thể vẽ thêm một tiếp tuyến chung tại tiếp điểm. Từ đó ta có thể vận dụng được tính chất của hai tiếp tuyến cắt nhau và một số tính chất khác. 4. Vẽ dây của hai đường tròn cắt nhau Nếu bài toán có hai đường tròn cắt nhau, ta có thể vẽ thêm dây chung để được dây chung vuông góc với đường nối tâm và bị đường nối tâm chia đôi. Dây chung đóng vai trò trung gian để chuyển từ đường tròn này sang đường tròn khác. B. Một số ví dụ Ví dụ 1. Cho hai đường tròn (O; R) và (O’; R) ngoài nhau. Một đường thẳng d // OO’ cắt đường tròn (O; R) tại A và B, cắt đường tròn (O’; R) tại C và D sao cho B và C nằm giữa A và D. Chứng minh rằng: a) ABCD ; b) ACBDOO . Giải * Tìm hướng giải Muốn chứng minh hai dây AB và CD bằng nhau ta chứng minh chúng cách đều tâm. Muốn vậy ta vẽ ,OHABOKCD rồi chứng minh OHOK . * Trình bày lời giải a) Vẽ ,OHABOKCD . Ta có OH // O’K. Mặt khác, HK // OO’ nên tứ giác HKO’O là hình bình hành. Hình bình hành này có 90H nên là hình chữ nhật. Suy ra OHOK . Do đó ABCD (hai dây cách đều tâm thì bằng nhau). b) Ta có ,HAHBKCKD (tính chất đường kính vuông góc với dây). Do ABCD nên KCKDHAHB . Ta có ACAHHCKCHCHKOO ; BDBKKDBKHBHKOO . Do đó ACBDOO Nhận xét: Bài toán vẫn đúng nếu hai đường tròn cắt nhau hoặc tiếp xúc nhau. Ví dụ 2. Cho đường tròn (O; 34cm) và đường tròn (O’; 20cm) cắt nhau tại A và B sao cho AB = 32cm. Qua A vẽ đường thẳng d cắt đường tròn (O) tại một điểm thứ hai là M, cắt đường tròn (O’) tại một điểm thứ hai là N. Tính độ dài lớn nhất của MN. Giải Vẽ ,OHMAOKAN và OEOH
Ta có 11 , 22AHAMAKAN , Do đó 22MNHKOE . Suy ra 2MNOO (Dấu “=” xảy ra khi EO hay khi d // OO ). Vậy max2MNOO khi d // OO . Gọi F là giao điểm của AB với OO . Ta có ABOO và 1 16 2FAABcm . Áp dụng định lí Py-ta-go vào các tam giác vuông AFO và AFO’ ta tính được: 22222 341690030()OFOAAFOFcm ; 22222 201614412()OFOAAFOFcm . * Nếu điểm F nằm giữa O và O thì max22301284MNOOcm . * Nếu điểm F không nằm giữa O và O thì max22301236MNOOcm . Nhận xét: Khi đề bài có hai đường tròn cắt nhau, cần xét hai trường hợp của hình vẽ: - Trường hợp hai tâm nằm trên hai nửa mặt phẳng đối nhau bờ chứa dây chung; - Trường hợp hai tâm thuộc cùng một nửa mặt phẳng bờ chứa dây chung. Ví dụ 3. Cho hai đường tròn đồng tâm O có bán kính là R và r (R > r). Trên đường tròn nhỏ lấy một điểm A cố định và một điểm M di động. Qua A vẽ dây BC của đường tròn lớn vuông góc với AM. Chứng minh rằng: a) Tổng 222ABACAM không phụ thuộc vào vị trí của điểm M. b) Trọng tâm G của tam giác MBC là một điểm cố định. Giải a) Gọi D là giao điểm thứ hai của BC với đường tròn nhỏ. Vẽ OHAD ta có: ,HAHDHBHC (đường kính vuông góc với dây). Xét MAD có OH là đường trung bình. Suy ra 2AMOH . Ta có: 2222ABACHBHAHCHA 22 22HAHB Xét HOB vuông tại H ta có: 2222 OHHBOBR . Xét HOA vuông tại H ta có: 2222 OHHAOAr Do đó 222222224ABACAMHAHBOH 222222HAOHHBOH 22 22rR (không đổi) b) MAD và MBC cùng có chung đường trung tuyến MH nên có cùng trọng tâm G. Xét MAD có 1 3OGOA , mà OA cố định nên G cố định. Vậy trọng tâm G của MBC là một điểm cố định. Ví dụ 4. Cho đường tròn (O) nội tiếp tam giác ABC vuông tại A, tiếp xúc với các cạnh BC, CA và AB lần lượt tại D, E, và F. Gọi r là bán kính của đường tròn. S là diện tích của tam giác ABC. Chứng minh rằng:
a) 2 ABACBC r  b) .SBDCD Giải * Tìm hướng giải Trong câu a) ta phải chứng minh một hệ thức liên hệ giữa r với các cạnh của tam giác. Trên hình vẽ chưa có bán kính của đường tròn. Vì thế ta cần vẽ các bán kính đi qua các tiếp điểm để vận dụng tính chất của tiếp tuyến. * Trình bày lời giải a) Theo tính chất tiếp tuyến cắt nhau ta có: ,,AEAFBDBFCECD . Tứ giác AEOF là hình vuông nên AEAFr . Ta có ABACBCAFBFAECEBDCD AFBDAECDBDCD 2AFAEr Suy ra 2 ABACBC r  . b) Diện tích tam giác ABC là 111..... 222SABACAFBFAECEAFAEAFCEBFAEBFCE 11....CD. 22AFrrCEBDrBDrAFCEBDBDCD  11... 222 ABBCCA rBDCDSBDCD    (Vì .Spr ). Suy ra 2.SSBDCD do đó .SBDCD . Ví dụ 5. Cho hai đường tròn (O 1 ; R 1 ) và (O 2 ; R 2 ) tiếp xúc ngoài tại A. Vẽ tiếp tuyến chung ngoài BC trong đó 12,BOCO . a) Chứng minh rằng tam giác ABC là tam giác vuông. b) Tính độ dài BC theo R 1, R 2. Giải a) Qua A vẽ tiếp tuyến chung trong cắt BC tại M. Ta có ;MAMBMAMC . Suy ra 2 BC MAMBMC . Xét ABC có đường trung tuyến AM và 1 2AMBC nên ABC vuông tại A. b) Ta có MO 1 là tia phân giác của góc AMB, MO 2 tia phân giác của góc AMC. Suy ra 12MOMO . Xét 12MOO vuông tại M có 12MAOO . Suy ra 2 1212..MAAOAORR . Do đó 12MARR Vậy 122BCRR . Ví dụ 6. Hai đường tròn (O; 17cm) và ( O ; 10cm) cắt nhau tại A và B. Biết OO = 21cm. Tính diện tích tứ giác OAOB . Giải
Vẽ dây chung AB cắt OO tại H thì ABOO và HAHB . Xét AOO có 222OOOAOA (vì 222211710 ) nên góc OAO là góc tù. Do đó điểm H nằm giữa O và O’. Đặt OHx thì 21OHx . Xét các HOA và HOA vuông tại H ta có: 22222OAOHOAOHAH Suy ra 222217102115xxx . Do đó 2221715AH => 8AH và 16ABcm . Diện tích tứ giác OAOB là: 211..16.21168 22SABOOcm . Nhận xét: Việc vẽ dây chung AB giúp ta xác định được tứ giác OAOB có hai đường chéo vuông góc. Do đó diện tích của tứ giác này bằng nửa tích của hai đường chéo. Đã biết OO = 21cm nên chỉ cần tính AB. C. Bài tập vận dụng * Vẽ đường kính vuông góc với một dây 10.1. Cho đường tròn (O; R) và một dây AB bất kì. Từ B vẽ tiếp tuyến xy. Vẽ AHxy . Chứng minh rằng tỉ số 2 AB AH luôn không đổi. 10.2. Cho hai đường tròn ( O ) và ( O ) cắt nhau tại A và B. Gọi M là trung điểm của OO , gọi N là điểm đối xứng của A qua M. Vẽ một đường thẳng qua A cắt đường tròn ( O ) và ( O ) lần lượt tại C và D. Chứng minh rằng tam giác NCD là tam giác cân. 10.3. Cho đường tròn ( O ) và hai dây song song AB, CD cách nhau 6cm, tâm O nằm ở miền trong của hai dây này và AB = 10cm, CD = 14cm. Một dây MN song song với hai dây này và cách đều chúng. Tính độ dài của dây MN. 10.4. Cho đường tròn (O; 3cm) và một điểm M cách O là 5cm. Qua M vẽ đường thẳng d cắt đường tròn tại A và B phân biệt hoặc trùng nhau. Tính giá trị lớn nhất, nhỏ nhất của tổng MA + MB. 10.5. Cho hai đường tròn ( O ) và ( O ) cắt nhau tại A và B. Hãy dựng qua A một đường thẳng cắt đường tròn ( O ) và ( O ) lần lượt tại một điểm thứ hai là C và D sao cho A là trung điểm của CD. 10.6. Cho hai đường tròn đồng tâm O, bán kính lần lượt là R và r trong đó 1 3RrR . Hãy dựng dây AB của đường tròn lớn cắt đường tròn nhỏ tại C và D (C nằm giữa A và D) sao cho ACCDDB . * Vẽ bán kính đi qua tiếp điểm 10.7. Cho đường tròn (O) và đường thẳng xy tiếp xúc với nhau tại A. Từ một điểm B trên đường tròn vẽ BHxy . Cho biết BH = 9cm, AH = 15cm. Tính bán kính của đường tròn. 10.8. Cho đường tròn (O; r) nội tiếp tam giác ABC vuông tại A. Qua O vẽ đường thẳng d cắt hai cạnh AB, AC lần lượt tại M và N. Tính diện tích nhỏ nhất của tam giác AMN. 10.9. Cho tam giác ABC vuông tại A có tổng hai cạnh góc vuông là 34cm. Biết bán kính R của đường tròn ngoại tiếp hơn bán kính r của đường tròn nội tiếp là 9cm. Tính R và r. 10.10. Hình bên vẽ đường tròn (O 2 ; x) tiếp xúc ngoài với đường tròn (O 1 ; a) và (O 3 ; b) và tiếp xúc với hai cạnh của góc nhọn xOy a) Chứng minh rằng bốn điểm O, O 1 , O 2 , O 3 thẳng hàng. b) Tìm độ dài x. * Vẽ tiếp tuyến chung

Related document

x
Report download errors
Report content



Download file quality is faulty:
Full name:
Email:
Comment
If you encounter an error, problem, .. or have any questions during the download process, please leave a comment below. Thank you.