Content text Vector Varsity Daily-2 (Set-B) Solution.pdf
1 Daily-02 [Set-B (Solve Sheet)] wm‡jevm: †f±i c~Y©gvb: 30 †b‡MwUf gvK©: 0.25 mgq: 20 wgwbU 1. P = M N Ges R = N M n‡j, P I R Gi ga ̈eZ©x †KvY KZ? [If P = M N and R = N M , what is the angle between P and R ?] 0 90 30 180 DËi: 180 e ̈vL ̈v: P N M M N R †h‡nZz P , M I N Dci j¤^ I R †f±i P †f±‡ii wecixZ w`‡K Aew ̄’Z Ges M I N Gi Dci j¤^| = 180 2. P Q n‡j, |(P ) | Q P = ? [If P Q |(P ) | Q P = ?] 0 P |P| P 2Q DËi: P 2Q e ̈vL ̈v: |P | Q = PQ sin90 = PQ |(P ) | Q P = |P| |Q| |P| sin90 = P2Q 3. `ywU †f±i A = 2i + 4j – 2k I B = 4i – aj – 4k | a Gi gvb KZ n‡j, †f±iØq mgvšÍivj n‡e? [Given vectors A = 2i + 4j – 2k and B = 4i – aj – 4k , for what value of a will the two vectors be parallel?] 4 –4 –8 8 DËi: –8 e ̈vL ̈v: A I B †f±iØq mgvšÍivj n‡j, Zv‡`i X, Y I Z A‡ÿi GKK †f±‡ii mn‡Mi AbycvZ mgvb n‡e| 2 4 = 4 –a = –2 –4 1 2 = 4 –a = 1 2 4 –a = 1 2 a = – 8 4. P B = C , C †f±iwU B †f±‡ii mv‡_ KZ †KvY Drcbœ K‡i? [If P B = C , what angle does the vector C make with the vector B ?] 90 45 0 30 DËi: 90 e ̈vL ̈v: C B P C †f±iwU P I B Df‡qi mv‡_ j¤^| C †f±iwU P I B Gi cÖwZwUi mv‡_ j¤^ †Kbbv Zv Dfq †f±‡ii j¤^Z‡j Av‡Q| 5. NÈvq 40 km †e‡M DËi w`‡K Pjgvb GKwU Mvwoi PvjK NÈvq 30 km †e‡M GKwU UavK‡K cwðg w`‡K Pj‡Z †`Lj| UavKwUi cÖK...Z †eM KZ? [A car is moving north at a speed of 40 km/h. The driver sees a truck moving west at a speed of 30 km/h. What is the actual velocity of the truck?] 70 kmh–1 75 kmh–1 50 kmh–1 78 kmh–1 DËi: 50 kmh–1 e ̈vL ̈v: N W E S vT vc vT v TC
2 VT = V 2 TC + V2 C = 402 + 302 = 50 kmh–1 GLv‡b, Mvwoi cÖK...Z †eM, VC = 40 kmh–1 Mvwoi mv‡c‡ÿ Uav‡Ki †eM, VTC = 30 kmh–1 Uav‡Ki cÖK...Z †eM, VT = ? 6. GKwU b`x‡Z † ̄av‡Zi †eM 18ms–1 Ges †bŠKvi †eM 9 ms–1 n‡j, †mvRvmywR Aci cv‡o †cuŠQv‡Z n‡j † ̄av‡Zi mv‡_ KZ †Kv‡Y †bŠKv Pvjv‡Z n‡e? [A river flows at a speed of 18 m/s, and a boat can travel at a speed of 9 m/s in still water. At what angle should the boat be steered with respect to the current to reach the opposite bank directly?] 120 126.86 None of these 135.33 DËi: None of these e ̈vL ̈v: †h‡nZz, † ̄av‡Zi †eM †bŠKvi †eM KLbB †bŠKvwU Aci cv‡o †cuŠQv‡Z cvi‡e bv| KviY, cos–1 – † ̄av‡Zi †eM †bŠKvi †eM = cos–1 – 18 9 = cos–1 (– 2) = cos–1 (– 2) Gi gvb Awb‡Y©q| 7. `yBwU mggv‡bi †f±i GKwU we›`y‡Z wμqvkxj| G‡`i jwäi gvb †h‡Kv‡bv GKwU †f±‡ii gv‡bi mgvb n‡j, ga ̈eZ©x †KvY KZ? [Two vectors of equal magnitude act at a point. If the magnitude of their resultant is equal to the magnitude of one of the vectors, what is the angle between them?] 90 120 45 0 DËi: 120 e ̈vL ̈v: P = Q = R n‡j, R = P 2 + Q2 + 2PQ cos P = P 2 + P2 + 2P2 cos P 2 = 2P2 + 2P2 cos –2P2 cos = P2 cos = P 2 – 2P2 = – 1 2 = cos 120 = 120 (Ans.) 8. `ywU †f±‡ii †hvMdj I we‡qvMd‡ji gvb ci ̄úi mgvb n‡j, †f±iØq ci ̄ú‡ii Kx n‡e? [If the magnitude of the sum and difference of two vectors are equal, what is the relationship between the vectors?] mgvšÍivj (Parallel) j¤^ (Perpendicular) wecixZ (Antiparallel) †Kv‡bvwU bq DËi: j¤^ (Perpendicular) e ̈vL ̈v: awi, `ywU †f±i A , B Gi ga ̈eZ©x †KvY |A | + B = |A | – B A B A 2 + B2 + 2AB cos = A2 + B2 – 2ABcos [eM© K‡i|] 2AB cos + 2ABcos = 0 4ABcos = 0 cos = 0 4AB cos = 0 cos = cos90 = 90 = 2 (j¤^) 9. V = 3xi – 8yj + 3zk †f±i †ÿÎwUi WvBfvi‡RÝ Gi Rb ̈ wb‡¤œi †KvbwU mwVK n‡e? [Given the vector field V = 3xi – 8yj + 3zk what is the divergence of V ?] .V = 0 DËi: e ̈vL ̈v: . V = x i + y j + z k . (3xi ) – 8yj + 3zk = i .i x 3x – j .j y 8y + k .k z 3z = 3 – 8 + 3 i . i = 1 x x n = nxn–1 = –2 (i) . V positive n‡j, Flask wbM©Z n‡e| (ii) . V Negative n‡j, Flask AvMZ n‡e| (iii) . V = 0 n‡j, AvMZ I wbM©Z Flask mgvb n‡e|
3 10. A = i + 2j + 5k I B = i – 5j – 2k n‡j, †KvbwU mwVK? [If A = i + 2j + 5k and B = i – 5j – 2k Which one is right?] (A ) + B (A ) – B = 0i – 28j + 14k (A ) + B . (A ) – B = 0 A + B = 4i + 3k , A – B = 2i + 2j †Kv‡bvwUB bq DËi: (A ) + B . (A ) – B = 0 e ̈vL ̈v: (A ) + B (A ) – B = (2i ) – 3j + 3k (7j ) + 7k = – 21 + 21 = 0 11. 3N I 4N gv‡bi `ywU e‡ji jwä wb‡Pi †KvbwU n‡Z cv‡i bv? [If two forces of magnitude 3N and 4N act on a point, which of the following cannot be the magnitude of their resultant force?] 7N 1N 2N None of these DËi: None of these e ̈vL ̈v: P = 3N Q = 4N Rmax = = P + Q = 7N Rmin = P Q = 1N Avgiv Rvwb, Rmin R Rmax jwäi gvb 1N n‡Z 7N Gi g‡a ̈ †h‡Kvb wKQz n‡Z cv‡i| 12. `yBwU KYv 3 ms–1 †e‡M I 5 ms–1 †e‡M 120 †KvY Drcbœ K‡i †Kv‡bv GKwU we›`y‡K AwZμg Kij| 2s ci Zv‡`i ga ̈Kvi `~iZ¡ KZ? [Two particles move with velocities of 3 m/s and 5 m/s at an angle of 120° to each other. If they pass through the same point at the same time, what is the distance between them after 2 seconds?] 24 m 34 m 14 m 44 m DËi: 14 m e ̈vL ̈v: 120 3ms–1 (3 2) = 6m 5ms–1 (5 2) = 10m S cos120 = 102 + 62 – S 2 2 10 6 – 1 2 = 100 + 36 – S 2 2 60 S 2 = 136 + 60 S = 14 m 13. hw` Mvwoi MwZi w`‡K evZvm eB‡Z _v‡K Zvn‡j †Kvb †ÿ‡Î mvg‡bi KuvP wfR‡e? [If a car is moving faster than the wind, which part of the car's windshield will get wet?] evZv‡mi †eM = Mvwoi †eM (Wind speed = car speed) evZv‡mi †eM Mvwoi †eM (Wind speed < car speed) evZv‡mi †eM Mvwoi †eM (Wind speed > car speed) †KvbwUB bq (None of these) DËi: evZv‡mi †eM Mvwoi †eM (Wind speed < car speed) e ̈vL ̈v: (i) evZvm I Mvwo/ ch©‡eÿK wecixZ w`‡K _vK‡j me©`vB mvg‡bi KuvP wfR‡e (ii) evZvm I Mvwo/ ch©‡eÿK GKB w`‡K _vK‡j Vc > Va n‡j, mvg‡bi KuvP wfR‡e Vc < Va n‡j, wcQ‡bi KuvP wfR‡e Vc = Va n‡j, Dfq KuvP wfR‡e 14. A = 2i – 4j I B = 4i – 2j n‡j, A eivei B Gi Dcvsk KZ? [If A = 2i – 4j and B = 4i – 2j what is the angle between A and B ?] – 4 5 (2i ) – 4j 4 5 (2i ) + 4j (2i ) + 4j 4 5 (2i ) – 4j DËi: 4 5 (2i ) – 4j e ̈vL ̈v: A eivei B Gi Dcvsk = B cos. a = A . B A . A A = 8 + 8 20 . 2i – 4j 20 = 16 20 (2i ) – 4j = 4 5 (2i ) – 4j 15. O we›`y n‡Z GKRb e ̈w3 C we›`y‡Z †M‡j Zvi `~iZ¡ I mi‡Yi gvb KZ? [If a person moves from point O to point C, what will be the magnitude of his displacement and distance?] 0 (0, 0) A (2, 0) B (2, 4) C (1, 5) 6, 26 26, 6 + 2 6 + 2, 26 26, 2 DËi: 6 + 2, 26
4 e ̈vL ̈v: 0 (0, 0) A (2, 0) B (2, 4) C (1, 5) miY, OC = (1 – 0) i + (5 – 0) j = 1i + 5j mi‡Yi gvb, |OC| = 5 2 + 12 = 26 `~iZ¡ = OA + AB + BC = 2 + 4 + (2 – 1) 2 + (5 – 4) 2 = 2 + 4 + 1 2 + 12 = 6 + 2 16. M . N = 0 Ges M I P †f±i ci ̄úi j¤^ n‡j, M Gi mgvšÍivj †f±i †KvbwU? [M . N = 0 and M and P are parallel vectors, what is the vector parallel to M ?] N 0 P N P DËi: N P e ̈vL ̈v: M . N = 0 gv‡bI M I N †f±i `ywU ci ̄úi j¤^| Avevi N I P †f±i Df‡qB †h Z‡j Av‡Q Zvi Dci j¤^ n‡jv N P | ZvB N P Ges M †f±iØq ci ̄úi mgvšÍivj| 17. P = 4i + 8j + 6k Q = 2i + 4j + 3k Zvn‡j, P Q = ? [P = 4i + 8j + 6k Q = 2i + 4j + 3k Then, P Q = ?] 0 8 9 Impossible to find out DËi: 0 e ̈vL ̈v: i 4 2 j 8 4 k 6 3 = (24 – 24) i + (12 – 12) j + (16 – 16) k = 0 18. 6 ms–1 †e‡M †`Š‡o hvevi mgq GKRb †jvK 8 ms–1 †e‡M j¤^fv‡e cwZZ e„wói m¤§yLxb n‡jv| e„wói †_‡K iÿv †c‡Z n‡j Zv‡K wb‡Ri w`‡Ki mv‡_ KZ †Kv‡Y QvZv ai‡Z n‡e? [A person is running at a speed of 6 m/s in the rain, which is falling vertically at a speed of 8 m/s. At what angle should he hold his umbrella to protect himself from the rain?] 36.86 59.5 92.36 42.72 DËi: 36.86 e ̈vL ̈v: tan = e„wói †eM †jv‡Ki †eM = 6 8 = tan–1 6 8 = 36.86; Avbyf‚wgKfv‡e Z_v †jv‡Ki w`‡K _v‡K| VM = 8 VR = 6 19. i j + j i = ? 0 i k j DËi: 0 e ̈vL ̈v: i j = k j i = – k i j + j i = k – k = 0 20. GKwU b`x‡Z † ̄av‡Zi †eM 6 ms–1 Ges †bŠKvi †eM 7ms–1 Ges b`xi cÖ ̄’ 70 3 m. hw` † ̄av‡Zi mv‡_ 60 †Kv‡Y Pvjv‡bv nq Z‡e b`x cvi n‡Z KZ mgq jvM‡e? [A river flows at a speed of 6 m/s, and a boat can travel at a speed of 7 m/s in still water. If the width of the river is √ m, how long will it take the boat to cross the river if it is steered at an angle of 60° to the current?] 20 h 15 sec 20 sec None of these DËi: 20 sec e ̈vL ̈v: t = d vsin = 70 3 7 sin60 = 70 3 2 7 3 = 20 sec GLv‡b, t = mgq d = b`xi cÖ ̄’ v = †bŠKvi †eM = † ̄av‡Zi mv‡_ †bŠKvi †KvY