Content text Conics CQ & MCQ Practice Sheet Solution (HSC 26).pdf
KwYK CQ & MCQ Practice Sheet Solution (HSC 26) 3 y 2 ( 5) 2 – x 2 ( 3) 2 = 1 b = 5 ; a = 3 Ges b > a Dr‡Kw›`aKZv, e = 1 + a 2 b 2 = 1 + 3 5 = 2 2 5 Dc‡K›`a (0, be) 0 5 . 2 2 5 (0 2 2) (Ans.) (L) `„k ̈Kí-1 n‡Z cvB, 3x2 + 9x – 6y – 8 = 0 ...... (i) 3(x2 + 3) – 6y – 8 = 0 3 x 2 + 2x 3 2 + 3 2 2 – 6y – 8 – 3 9 4 = 0 3 x + 3 2 2 = 6y + 59 4 3 x + 3 2 2 = 6 y + 59 24 x + 3 2 2 = 2 y + 59 24 hv GKwU cive„‡Ëi mgxKiY| G‡K X 2 = 4aY Gi mv‡_ Zzjbv K‡i cvB, X = x + 3 2 , Y = y + 59 24 , 4a = 2 a = 1 2 GLb, Dc‡Kw›`aK j‡¤^i cÖvšÍ we›`y؇qi ̄’vbvsK, (X, Y) = ( 2a, a) X = 2a x + 3 2 = 2 1 2 x + 3 2 = 1 x = – 3 2 1 x = – 1 2 , – 5 2 Ges Y = a y + 59 24 = 1 2 y = 1 2 – 59 24 y = – 47 24 Dc‡Kw›`aK j‡¤^i cÖvšÍwe›`y؇qi ̄’vbv1⁄4 – 5 2 – 47 24 I – 1 2 – 47 24 (Ans.) wbqvgK‡iLvi mgxKiY, Y = – a A_©vr, y + 59 24 = – 1 2 y = – 1 2 – 59 24 = – 12 – 59 24 = – 71 24 = – 71 24 24y + 71 = 0 (Ans.) (M) awi, KwYKwUi mgxKiY, x 2 a 2 + y 2 b 2 = 1 ..... (i) †hLv‡b, a > b †`Iqv Av‡Q, Dr‡Kw›`aKZv, e = 1 3 Ges Dc‡Kw›`aK j‡¤^i •`N© ̈, 10 2b2 a = 10 b 2 = 5a Avevi, e = 1 – b 2 a 2 [⸪ a > b] 1 3 = 1 – b 2 a 2 1 3 = 1 – 5a a 2 = 1 – 5 a 5 a = 1 – 1 3 = 2 3 a = 15 2 b 2 = 5.a = 5 15 2 = 75 2 (i) bs n‡Z cvB, x 2 a 2 + y 2 b 2 = 1 x 2 15 2 2 + y 2 75 2 = 1 4x2 225 + 2y2 75 = 1 4x2 + 6y2 = 225 (Ans.) 4| `„k ̈Kí-1: GKwU cive„‡Ëi kxl©we›`y (1, 1) Ges wbqvgK‡iLvi mgxKiY, 2x + y – 1 = 0 `„k ̈Kí-2: X S(–12, 6) A C A S(12, 6) X Y Y [ivRkvnx †evW©- Õ23] (K) 2x2 + y2 = 2 KwYKwUi kxl©we›`yi ̄’vbv1⁄4 wbY©q Ki| (L) `„k ̈Kí-1 Gi Av‡jv‡K cive„‡Ëi mgxKiY wbY©q Ki| (M) `„k ̈Kí-2 Gi Dr‡Kw›`aKZv 3 n‡j KwYKwUi AmxgZU †iLvi mgxKiY wbY©q Ki| mgvavb: (K) 2x2 + y2 = 2 x 2 1 + y 2 2 = 1 x 2 1 2 + y 2 ( 2) 2 = 1 ; hv GKwU Dce„‡Ëi mgxKiY| a = 1 ; b = 2 b > a kxl©we›`yi ̄’vbv1⁄4 (0, b) (0 2) (Ans.)