PDF Google Drive Downloader v1.1


Report a problem

Content text GỘP CHƯƠNG IV_Đề bài không dòng chấm.docx

CHƯƠNG IV: QUAN HỆ SONG SONG TRONG KHÔNG GIAN BÀI 10: ĐƯỜNG THẲNG VÀ MẶT PHẲNG TRONG KHÔNG GIAN A. TÓM TẮT KIẾN THỨC CƠ BẢN CẦN NẮM 1. KHÁI NIỆM MỞ ĐẦU Mặt bảng, màn hình máy tính hay mặt nước lúc tĩnh lặng là một số hình ảnh về một phần của mặt phẳng. Mặt phẳng không có bề dày và không có giới hạn. Chú ý - Để biểu diễn mặt phẳng ta thường dùng một hình bình hành và viết tên của mặt phẳng vào một góc của hình. Ta cũng có thể sử dụng một góc và viết tên của mặt phẳng ở bên trong góc đó. - Để kí hiệu mặt phằng ta dùng chữ cái in hoa hoặc chữ cái Hy Lạp đặt trong dấu ngoặc ( ). Trong Hình 4.1, ta có mặt phẳng ()P và mặt phằng () . - Điểm A thuộc mặt phẳng ()P , kí hiệu ()AP . - Điểm B không thuộc mặt phẳng ()P , kí hiệu ()BP . Nếu ()AP ta còn nói A nằm trên ()P , hoặc ()P chứa A , hoặc ()P đi qua A . Chú ý. Để nghiên cứu hình học không gian, ta thường vẽ các hình đó lên bảng hoặc lên giấy. Hình vẽ đó được gọi là hình biểu diễn của một hình không gian. Hình biểu diễn của một hình không gian cần tuân thủ những quy tắc sau: - Hình biểu diễn của đường thẳng là đường thẳng, của đoạn thẳng là đoạn thẳng. - Hình biều diễn của hai đường thẳng song song là hai đường thẳng song song, của hai đường thẳng cắt nhau là hai đường thẳng cắt nhau. - Hình biểu diễn giữ nguyên quan hệ liên thuộc giữa điểm và đường thẳng. - Dùng nét vẽ liền để biều diễn cho đường nhìn thấy và nét đứt đoạn đề biểu diễn cho đường bị che khuất. Các quy tắc khác sẽ được học ở phần sau. 2. CÁC TÍNH CHẤT THỪA NHẬN Tính chất thừa nhận 1: Có một và chỉ một đường thẳng đi qua hai điểm phân biệt cho trước. Tính chất thừa nhận 2: Có một và chỉ một mặt phẳng đi qua ba điểm không thẳng hàng cho trước.
Tính chất thừa nhận 3: Tồn tại bốn điểm không cùng nằm trên một mặt phẳng. Nhận xét. Một mặt phẳng hoàn toàn xác định nếu biết ba điểm không thẳng hàng thuộc mặt phẳng đó. Ta kí hiệu mặt phẳng đi qua ba điểm không thẳng hàng ,,ABC là ()ABC . Nếu có nhiều điểm cùng thuộc một mặt phẳng thì ta nói những điểm đó đồng phẳng. Nếu khồng có mặt phẳng nào chứa các điểm đó thì ta nói những điểm đó không đồng phẳng. Tính chất thừa nhận 4: Nếu hai mặt phẳng phân biệt có điểm chung thì các điềm chung của hai mặt phẳng là một đường thẳng đi qua điểm chung đó. Chú ý. Đường thẳng chung d (nếu có) của hai mặt phẳng phân biệt ()P và ()Q được gọi là giao tuyến của hai mặt phẳng đó và kí hiệu là ()()dPQ . Tính chất thừa nhận 5: Trên mỗi mặt phẳng, tất cả các kết quả đã biết trong hình học phẳng đều đúng. 3. CÁCH XÁC ĐỊNH MỘT MẶT PHẲNG Cách 1: Một mặt phẳng được xác định nếu biết nó đi qua ba điểm ,,ABC không thẳng hàng của mặt phẳng, kí hiệu .ABC Cách 2: Một mặt phẳng được xác định nếu biết nó đi qua một đường thẳng d và một điểm A không thuộc ,d kí hiệu ,.Ad Cách 3: Một mặt phẳng được xác định nếu biết nó đi qua hai đường thẳng ,ab cắt nhau, kí hiệu ,.ab 4. HÌNH CHÓP VÀ TỨ DIỆN Cho đa giác 12...nAAA và cho điểm S nằm ngoài mặt phẳng chứa đa giác đó. Nối S với các đỉnh 12,,...,nAAA ta được n miền đa giác 12231,,...,.nnSAASAASAA Hình gồm n tam giác đó và đa giác 123...nAAAA được gọi là hình chóp 123.....nSAAAA Trong đó: • Điểm S gọi là đỉnh của hình chóp. • Đa giác 12...nAAA gọi là mặt đáy của hình chóp. • Các đoạn thẳng 12231,,...,nnAAAAAA gọi là các cạnh đáy của hình chóp. • Các đoạn thẳng 12,,...,nSASASA gọi là các cạnh bên của hình chóp. • Các miền tam giác 12231,,...,nnSAASAASAA gọi là các mặt bên của hình chóp. (P) A5 A6 A4 A3 A2 A1 S Chú ý

Related document

x
Report download errors
Report content



Download file quality is faulty:
Full name:
Email:
Comment
If you encounter an error, problem, .. or have any questions during the download process, please leave a comment below. Thank you.