Content text Chapter 1 Units and Measurements.pdf
Note : ≅There are certain physical quantities which behave neither as scalar nor as vector. For example, moment of inertia is not a vector as by changing the sense of rotation its value is not changed. It is also not a scalar as it has different values in different directions (i.e. about different axes). Such physical quantities are called Tensors. Fundamental and Derived Quantities. (1) Fundamental quantities : Out of large number of physical quantities which exist in nature, there are only few quantities which are independent of all other quantities and do not require the help of any other physical quantity for their definition, therefore these are called absolute quantities. These quantities are also called fundamental or base quantities, as all other quantities are based upon and can be expressed in terms of these quantities. (2) Derived quantities : All other physical quantities can be derived by suitable multiplication or division of different powers of fundamental quantities. These are therefore called derived quantities. If length is defined as a fundamental quantity then area and volume are derived from length and are expressed in term of length with power 2 and 3 over the term of length. Note : ≅ In mechanics Length, Mass and time are arbitrarily chosen as fundamental quantities. However this set of fundamental quantities is not a unique choice. In fact any three quantities in mechanics can be termed as fundamental as all other quantities in mechanics can be expressed in terms of these. e.g. if speed and time are taken as fundamental quantities, length will become a derived quantity because then length will be expressed as Speed × Time. and if force and acceleration are taken as fundamental quantities, then mass will be defined as Force / acceleration and will be termed as a derived quantity. Fundamental and Derived Units. Normally each physical quantity requires a unit or standard for its specification so it appears that there must be as many units as there are physical quantities. However, it is not so. It has been found that if in mechanics we choose arbitrarily units of any three physical quantities we can express the units of all other physical quantities in mechanics in terms of these. Arbitrarily the physical quantities mass, length and time are choosen for this purpose. So any unit of mass, length and time in mechanics is called a fundamental, absolute or base unit. Other units which can be expressed in terms of fundamental units, are called derived units. For example light year or km is a fundamental units as it is a unit of length while s –1, m2 or kg/m are derived units as these are derived from units of time, mass and length respectively. System of units : A complete set of units, both fundamental and derived for all kinds of physical quantities is called system of units. The common systems are given below – (1) CGS system : The system is also called Gaussian system of units. In it length, mass and time have been chosen as the fundamental quantities and corresponding fundamental units are centimetre (cm), gram (g) and second (s) respectively. (2) MKS system : The system is also called Giorgi system. In this system also length, mass and time have been taken as fundamental quantities, and the corresponding fundamental units are metre, kilogram and second.