PDF Google Drive Downloader v1.1


Report a problem

Content text Bài 2_Công thức lượng giác_KNTT_Vở bài tập.pdf

BÀI 2: CÔNG THỨC LƯỢNG GIÁC A. TÓM TẮT KIẾN THỨC CƠ BẢN CẦN NẮM 1. CÔNG THỨC CỘNG             cos cos cos sin sin cos cos cos sin sin sin sin cos cos sin sin sin cos cos sin tan tan tan 1 tan tan tan tan tan . 1 tan tan a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b                     2. CÔNG THỨC NHÂN ĐÔI 2 2 2 2 2 sin 2 2sin cos cos 2 cos sin 2cos 1 1 2sin 2 tan tan 2 . 1 tan a a a a a a a a a a a          3. CÔNG THỨC BIẾN ĐỔI TÍCH THÀNH TỔNG             1 cos cos cos cos 2 1 sin sin cos cos 2 1 sin cos sin sin . 2 a b a b a b a b a b a b a b a b a b                         4. CÔNG THỨC BIẾN ĐỔI TỔNG THÀNH TÍCH sin sin 2sin cos 2 2 sin sin 2cos sin 2 2 cos cos 2cos cos 2 2 cos cos 2sin sin 2 2 u v u v u v u v u v u v u v u v u v u v u v u v                  B. PHÂN LOẠI VÀ PHƯƠNG PHÁP GIẢI BÀI TẬP Dạng 1: Sử dụng công thức cộng 1. Phương pháp giải.  cosa  b  cos a cosb  sin asin b  cosa  b  cos a cosb  sin asin b  sin a  b  sin a cosb  cos asin b  sin a  b  sin a cosb  cos asin b

b) 4 4sin 2cos 16 8 B     Lời giải ......................................................................................................................................................................................... ......................................................................................................................................................................................... ......................................................................................................................................................................................... ......................................................................................................................................................................................... ......................................................................................................................................................................................... ......................................................................................................................................................................................... Ví dụ 7: Tính giá trị biểu thức lượng giác sau: a) 0 0 1 1 cos 290 3 sin 250 A   b)    0 0 B  1 tan 20 1 tan 25 c) 0 0 0 0 C  tan 9  tan 27  tan 63  tan81 d) 2 2 2 2 sin sin sin sin 9 9 9 9 D        Lời giải ......................................................................................................................................................................................... ......................................................................................................................................................................................... ......................................................................................................................................................................................... ......................................................................................................................................................................................... ......................................................................................................................................................................................... ......................................................................................................................................................................................... ......................................................................................................................................................................................... ......................................................................................................................................................................................... ......................................................................................................................................................................................... ......................................................................................................................................................................................... ......................................................................................................................................................................................... ......................................................................................................................................................................................... ......................................................................................................................................................................................... ......................................................................................................................................................................................... ......................................................................................................................................................................................... ......................................................................................................................................................................................... ......................................................................................................................................................................................... ......................................................................................................................................................................................... Ví dụ 8: Tính giá trị biểu thức lượng giác sau: a) sin cos .cos .cos 32 32 16 8 A      b) sin10 .sin 30 .sin 50 .sin 70 o o o o B  c) 3 cos cos 5 5 C    
d) 2 2 2 2 3 cos cos cos 7 7 7 D       Lời giải ......................................................................................................................................................................................... ......................................................................................................................................................................................... ......................................................................................................................................................................................... ......................................................................................................................................................................................... ......................................................................................................................................................................................... ......................................................................................................................................................................................... ......................................................................................................................................................................................... ......................................................................................................................................................................................... ......................................................................................................................................................................................... ......................................................................................................................................................................................... ......................................................................................................................................................................................... ......................................................................................................................................................................................... ......................................................................................................................................................................................... ......................................................................................................................................................................................... ......................................................................................................................................................................................... ......................................................................................................................................................................................... ......................................................................................................................................................................................... ......................................................................................................................................................................................... Ví dụ 9: Cho  , thoả mãn 2 sin sin 2     và 6 cos cos 2     . Tính cos    và sin     . Lời giải ......................................................................................................................................................................................... ......................................................................................................................................................................................... ......................................................................................................................................................................................... ......................................................................................................................................................................................... ......................................................................................................................................................................................... ......................................................................................................................................................................................... ......................................................................................................................................................................................... ......................................................................................................................................................................................... ......................................................................................................................................................................................... ......................................................................................................................................................................................... ......................................................................................................................................................................................... ......................................................................................................................................................................................... ......................................................................................................................................................................................... .........................................................................................................................................................................................

Related document

x
Report download errors
Report content



Download file quality is faulty:
Full name:
Email:
Comment
If you encounter an error, problem, .. or have any questions during the download process, please leave a comment below. Thank you.