Content text XI - maths - chapter 3 - TRIGONOMETRIC EQUATIONS (WE_Level-5_6) (131-161).pdf
Narayana Junior Colleges TRIGONOMETRIC EQUATIONS JEE ADVANCED - VOL - II Narayana Junior Colleges 131 TRIGONOMETRIC EQUATIONS WORKEDOUT EXAMPLES: W.E-1:Solutions of the equation 4 4 7 sin cos sin cos 2 x x x x . Ans: 1 2 12 n n x where n Z Sol: 4 4 4 2 2 4 2 2 sin cos sin 2 sin cos cos 2 sin cos x x x x x x x x 2 2 2 2 2 sin cos 2sin cos x x x x where we get 4 4 2 1 sin cos 1 sin 2 ...... 2 x x x i Using (i), the given equation becomes 1 7 2 1 sin 2 sin 2 2 4 x x 2 2sin 2 7sin 2 4 0 (2sin 2 1)(sin 2 4) 0 x x x x either 2sin 2 1 0 2 1 6 n x x n where n Z or sin 2 4 0 x which has no solution because - 4 range of sin 2x where n Z So, the solution of equation is 1 2 12 n n x where n Z . W.E-2:Solutions of the equation 3 3 3 3 sin cos 3 3 sin cos 1 x x x x . Ans: 2 1 2 ; , 3 x k x m m I k I Sol: Let a x b x c 3 sin ; cos ; 1 then given equation reduces to 3 3 3 a b c abc 3 0 2 2 2 a b c a b c ab bc ca 0 2 2 3sin cos 1 3sin cos 1 3sin cos cos 3sin 0 x x x x x x x x . Thus the given equation has solution if 3 sin cos 1 0 x x 3 1 1 3 sin cos 1 sin cos 2 2 2 sin sin 6 6 x x x x x 1 6 6 n x n . If n is odd; 2 1 6 6 3 3 x n n x k If n is even 2 ; 6 6 x n n x m m I . W.E-3: Solution set of the equation 2 2 6 6 10 10 log sin 3 sin log sin 2 x x x x x x x . Ans: 5 3 Sol: 2 2 6 6 10 10 log sin 3 sin log sin 2 x x x x x x x sin3 sin 0 x x and sin 2 0 x 2sin 2 cos 0 x x and st x I quadrant. 2 6 10 sin 3 sin log 0 sin 2 x x x x x or 2sin 2 cos 1 sin 2 x x x or 2cos 1 x
Narayana Junior Colleges JEE ADVANCED - VOL - II TRIGONOMETRIC EQUATIONS 132 Narayana Junior Colleges or cos 1/ 2 2 / 3 x x n 2 2 6 6 6,0 0 1 10 10 x x x x x and . for n=-1 x= 5 3 -2 3 π π π W.E-4: Solution of the equation sin cos 2 sin 2 2 x x x Ans: 2 2 1 1 1 6 2 n n x n or x n Sol: sin cos 2 sin 2 2 x x x 2 1 2sin cos 2sin 2 2 x x x 2 1 sin 2sin x x 2 2sin sin 1 0 x x 2 2sin 2sin sin 1 0 x x x 2sin sin 1 1 sin 1 0 x x x 1 sin sin 1 2 x or x 1 ; 1 6 2 n n x n x n 2 2 1 1 1 6 2 n n x n or x n W.E-5: The least positive angle measured in degrees satisfying the equation 3 3 3 3 sin sin 2 sin 3 sin sin 2 sin 3 x x x x x x Ans: 0 72 Sol: 3 3 3 3 sin sin 2 sin 3 sin sin 2 sin 3 x x x x x x 3 3 3 3 a b c a b c a b b c c a 0 sin sin2 sin2 sin3 sin3 sin 0 x x x x x x 3 5 2sin cos 0 ( ) 2sin cos 0 2 2 2 2 x x x x or (or) 2sin 2 cos 0 x x 3 2 sin 0 ; 2 3 x n x n Z or 5 2 sin 0 ; 2 5 x m x m Z or sin 2 0 ; 2 n x x k Z or cos 0 2 1 ; 2 x x p p Z or cos 0 2 1 ; 2 x x q q Z . Least positive angle is 2 0 72 5 . W.E-6:The set of value of ' ' a for which the equation 4 4 sin cos sin 2 0 x x x a possesses solutions. Ans: 3 1, 2 2 a Sol: 4 4 sin cos sin 2 0 x x x a . 2 2 2 2 2 2 2 2 sin cos 2sin cos 2sin cos 2sin cos 0 x x x x x x x x a 2 sin 2 1 sin 2 0 2 x x a 2 2 sin 2 2sin 2 2 0 x x a or 2 2 sin 2 2sin 2 2 a x x or 2 2 3 sin 2 1 a x 2 2 3 1 1,1 a y where y 2 3 0,4 a 3 1, 2 2 a sin 2 1 2 3 x a
Narayana Junior Colleges TRIGONOMETRIC EQUATIONS JEE ADVANCED - VOL - II Narayana Junior Colleges 133 sin 2 sin x where 1 sin 1 2 3 a or 1 1 1 sin 1 2 3 2 n x n a where 3 1, 2 2 a . W.E-7:The general solution of the equation, 2 1 2 1 2 1 2 sin sin 3cos 0 3 3 x x x x x x . Ans: 1 3 1 1 sin 3 2 4 n x where n Sol: 2 1 2 1 2 1 2 sin sin 3cos 0 3 3 x x x x x x 2 4 2 1 2 1 2 1 2 sin co s 3 co s 2 3 3 3 x x x x x x or 2 2 2 1 2 1 2 1 2sin cos 3cos 3 3 3 x x x x x x or 2 2 2 1 2 1 2 1 4sin cos 3cos 0 3 3 3 x x x x x x 2 2 1 cos 0 3 x x (or) 2 1 sin 3 x x 3 3 1 sin , 1 sin 4 4 n where n 2 2 3 1 cos cos 3 2 x x 2 1 3 2 x n x 1 3 2 1 2 x n or 2 1 sin sin 3 x x 1 3 1 1 sin 3 2 4 n x where n W.E-8:Solve the equation 2 cos 3 2cos 3 2cos 4 3 cos 7 3 x x x x 2 1 sin 3 2 sin 3 2 sin 4 3 2 sin 3 sin 7 3 x x x x x Ans: log 1 3 4 16 16 n n x , n Z Sol: Let 3x then 2 2 cos 2cos 2cos4 cos7 sin 2sin 2sin 4 2sin3 sin7 cos cos 7 sin 7 sin 2 cos 4 sin 4 2 2 sin 3 2sin 4 sin 3 2cos 4 sin 3 2 cos 4 sin 4 2 2sin 3 s in 4 s in 3 1 c o s 4 s in 3 1 1 s in 3 0 sin 3 1 sin 4 cos 4 1 0 sin 3 1 3 2 2 n 3 3 2 / 2 x n 1 3 1 4 1 3 2 1 log 2 2 x n n x 3 4 1 log 1 2 n x And sin 4 cos 4 1 sin 4 sin 4 1 4 4 4 4 n n 4 3 1 4 4 n x n 3 1 4 16 16 n x n
Narayana Junior Colleges JEE ADVANCED - VOL - II TRIGONOMETRIC EQUATIONS 134 Narayana Junior Colleges log 1 3 4 16 16 n n x , n Z W.E-9: The value of ' ' a so that the equation 2 2 2 2 cos 2cos 5cos 2 sec sec 10 x x x a x has a real solution. Ans: 2 6 r a where r I Sol: Since 2 cos 1 and 2 sec 1 2 2 cos 2cos 5cos 2 1 10 x x 2 2cos 5cos 2 2 10 x x n n I 2 2cos 5cos 2 20 , x x n n I . Now 2 2 5 9 2cos 5cos 2 2 cos 4 8 x x x 2 1 2cos 5cos 2 9 x x In equation 1 only one value of n is possible i.e., n 0 2 2cos 5cos 2 0 x x 2cos 1 cos 2 0 x x 2 3 x n 2 2 sec 2 sec 2 1 3 3 n a n 2 sec 2 2 1 3 n a 2 3 a r 2 6 r a where r I . W.E-10: The number of roots of the equation, sin 2sin 2 3 sin3 x x x is [IIT 2014] (A) 0 (B) 1 (C) 2 (D) infinite Ans: A Sol: sin sin 3 2 sin 2 3 x x x 2sin cos 2 2sin 2 3 x x x 2sin cos 2 2sin 2 3 0 x x x 2 2 2 2 2sin cos2 2sin2 sin cos sin 2 cos 2 1 0 x x x x x x x 2 2 2 1 sin 2 sin cos 2 cos 0 x x x x Hence there is no root because all terms do not vanish simultaneously. W.E-11: Total number of solutions of sin cos 0 x x for x0, 2 is (where . denotes the greatest integer function) (A) 1 (B) 2 (C) 4 (D) 0 Ans: D Sol: Given equation is sin cos x x Real solution exist iff - cosx is integer i.e., cos x is an integer. So possible solutions for x0, 2 are x 0, / 2, ,3 / 2,2 . when x 0, 2 RHS = -1 and LHS = 0 no solution x or / 2 3 / 2 RHS = 0 and LHS = 1 no solution x RHS = 1 and LHS = 0 no solution. So, we can conclude that equations has no real solution exist. W.E-12: Number of solutions to the equation sin 2sin sin 2sin 2 3 1 0, 2 x x x x e e e e in is (A) zero (B) two (C) four (D) one Ans: (B) Sol: Let sin ' ' x e t then 2 2 2 3 1 t t t t 2 2 t t t t 2 3 1 here 2 2 t t t t t R 2 3 0, 1 0 ,