PDF Google Drive Downloader v1.1


Report a problem

Content text BÀI TẬP CUỐI CHƯƠNG 5_LỜI GIẢI.pdf



Vậy H là trung điểm của CD b) Gọi H là trung điểm của CD. Xét tam giác OCD có: OC  OD OCD vuông tại O . Lại có OH là đường trung tuyến của tam giác OCD nên OH đồng thời là đường cao của tam giác OCD. Vậy OH  CD . c) Gọi OH, OK lần lượt là khoảng cách từ O tới AB, CD. Do AB  CD  AH  CK . Xét tam giác OAH và tam giác OCK có: AHO CKO 90    OA  OC  R AH  CK AHO  CKO (cạnh huyền - cạnh góc vuông)  OH  OK (cạnh tương ứng). d) Gọi OH, OK lần lượt là khoảng cách từ O tới AB, CD. Xét tam giác O A H và tam giác OCK có: AHO CKO 90    OA  OC  R OH  OK AHO CKO (cạnh góc vuông - cạnh góc vuông)  AH  CK (cạnh tương ứng) Chứng minh tương tự: BH  DK nên AB  CD . 5. Cho hai đường tròn (I;r) và (K;R) tiếp xúc ngoài với nhau tại P với R  r, đường thẳng a lần lượt tiếp xúc với (I;r) và (K;R) tại A và B,a cắt KI tại O . Đường thẳng qua P vuông góc với IK cắt đường thẳng a tại M . Chứng minh: a) OI r OK R  ; b) AB  2MP ; c) IMK 90   . Lời giải
a) Do AI là tiếp tuyến của (I) nên AI  AB . Do BK là tiếp tuyến của (K) nên KB  AB Từ đó suy ra AI / /BK Xét tam giác OBK có: / / OI AI r AI BK OK BK R    (định lí Thalet). b) Xét (I) có MP, MA là hai tiếp tuyến cắt nhau  MP  MA(1).  MP  MB(2) Từ (1) và (2) suy ra MP  MP  MA MB  2MP  AB c) Do AI / /BK  OIA  IKB (2 góc đồng vị). Mà AIK OAI 180    (2 góc kề bù) nên AIK IKB 180    (3). Do MP, MA là hai tiếp tuyến cắt nhau IM là phân giác   1 2 AIP  MIP  AIP (4). Do MP, MB là hai tiếp tuyến cắt nhau KM là phân giác   1 (5) 2 IKP  MKP  IKP . Từ (3), (4) và (5) suy ra 1  1  1 180   90 2 2 2 AIP IKP MIP MKP         Xét tam giác IMK có: MIP MKP 90 IMK 90       6. Mặt đĩa CD ở Hình 93 có dạng hình vành khuyên giới hạn bởi hai đường tròn có bán kính lần lượt là 1,5cm và 6cm. Hình vành khuyên đó có diện tích bằng bao nhiêu centimét vuông (làm tròn kết quả đến hàng phần mười)? Lời giải Hình vành khuyên đó có diện tích bằng:       2 2 2 2 2 S   R  r   6 1,5 106 cm . 7. Hình 94 mô tả mảnh vải có dạng một phần tư hình vành khuyên, trong đó hình vành khuyên giới hạn bởi hai đường tròn cùng tâm và có các bán kính lần lượt là 3dm và 5dm . Diện tích của mảnh vải đó bằng bao nhiêu decimét vuông (làm tròn kết quả đến hàng phần mười)?

Related document

x
Report download errors
Report content



Download file quality is faulty:
Full name:
Email:
Comment
If you encounter an error, problem, .. or have any questions during the download process, please leave a comment below. Thank you.