PDF Google Drive Downloader v1.1


Report a problem

Content text E3.1 - Parcial Bloque 3.pdf

An ́alise Matem ́atica. Curso 2022-2023. Grao en Enxener ́ıa Inform ́atica. ESEI Ourense. Departamento de Matem ́aticas. Universidade de Vigo. Data: 15/12/2022 Bloque III APELIDOS NOME DNI NOTA 1. Calcular o polinomio de interpolaci ́on de Lagrange dunha funci ́on f(x) sabendo que f(−2) = 1/5, f(−1) = 1/2 e f(0) = 1. Aproximar o valor de f(−5/4) e calcular o erro cometido se f(x) = 1 1 + x 2 . Solucion: ́ Temos que interpolar nos nodos x0 = −2, x1 = −1 e x2 = 0 os valores y0 = 1 5 , y1 = 1 2 , y2 = 1. Os polinomios de Lagrange son: L0(x) = (x − (−1))(x − 0) (−2 − (−1))(−2 − 0) = (x + 1)x 2 , L1(x) = (x − (−2))(x − 0) (−1 − (−2))(−1 − 0) = −(x + 2)x, L2(x) = (x − (−2))(x − (−1)) (0 − (−2))(0 − (−1)) = (x + 2)(x + 1) 2 , e polo tanto o polinomio interpolador ́e p2(x) = y0L0(x) + y1L1(x) + y2L2(x) = 1 5 L0(x) + 1 2 L1(x) + 1L2(x) = x 2 + 6x + 10 10 . Agora tendo en conta que f (x) ≈ p2 (x) para todo x ∈ [−2, 0] podemos aproximar f − 5 4 ≈ p2 − 5 4 = 13 32 = 0.40625 Se f(x) = 1 1 + x 2 o valor exacto ́e f − 5 4 = 16 41 = 0.390244 , sendo o erro cometido Erro= f − 5 4 − p2 − 5 4 = 0.016006 1

Related document

x
Report download errors
Report content



Download file quality is faulty:
Full name:
Email:
Comment
If you encounter an error, problem, .. or have any questions during the download process, please leave a comment below. Thank you.