Content text XI - maths - chapter 3 - TRIGNOMETRIC RATIOS (1-18).pdf
TRIGONOMETRIC RATIOS 1 JEE MAINS - VOL - II Angle: An angle is the union of two rays having a common end point in a plane. Measurement of an angle : Sexagesimal system: (i) One right angle = 2 radian = 90o. (ii) radian = 2 right angles = 180o. (iii)1 60 minutes(60') (iv)1' 60seconds(60'') (v)1o 0.001745 radian (vi) 0 1 11 1radian 57 17 45 (approx) Centisimal system: (i) 1 right angle = 100 grades written as 100g (ii) 1 grade or 1g = 100 minutes (100’) (iii)1 minute or 1’ = 100 seconds (100”) Circular system : Radian: A radian is the angle subtended at the centre of a circle by an arc equal in length to the radius of the circle. The length of arc l r . (i) 1 revolution = 2 radians 360 (ii) radians = 2right angles 2 90 180 (iii) 1 degree (1 ) 180 rad 0.01745 rad (iv) 1 rad 180 (1 ) c degrees 57 17'46" Note :(i)Value of 22 355 ( ) ( )3.1416 7 113 or or (ii) is an irrational number (iii) circumferenceof thecircle π = diameter of thecircle Trigonometric Identities : i) sin cos 1, , ec n n Z ii) cos sec 1, 2 1 , 2 n n Z iii) tan cot 1, 2 1 , 2 n n iv) 2 2 2 2 sin cos 1 sin 1 cos v) 2 2 2 2 sec tan 1 sec 1 tan 2 1 , 2 n n Z . (vi) 2 2 cos cot 1 ec 2 2 cos 1 cot ec n n Z , Note: (i) If 2 1 , 2 n n Z , then 2 2 sec tan 1 sec tan sec tan 1 1 sec tan sec tan (ii) If n n Z , then 1 cos cot cos cot ec ec Trigonometric ratios of various angles: Trig. Ratio 0 30 45 60 90 sin 0 1 2 1 2 3 2 1 cos 1 3 2 1 2 1 2 0 tan 0 1 3 1 3 cos ec 2 2 2 3 1 sec 1 2 3 2 2 cot 3 1 1 3 0 TRIGONOMETRIC RATIOS SYNOPSIS
2 TRIGONOMETRIC RATIOS JEE MAINS - VOL - II 0 or 360 o o 180o 90 o All Positive others negative others negative others negative Sin >0, Cosec Tan >0, Cot Cos >0, Sec Q2 Q3 Q4 Q1 270o Note : i) sin tan cos 2 1 0, 2 n n n n Z ii)sin 2 1 1 cos 1 , 2 n n n and n n Z Domain and range of trigonometric functions : W.E-1: If 4 sin 2 a then a lies in Sol: 1 sin 1 4 1 1 2 a 2 4 2 a 2 6 a a 2,6 Some useful results : (a) If A B or 90o 270o, then (i) 2 2 sin sin 1 A B (ii) 2 2 cos cos 1 A B (iii)tan . tan 1 A B (iv) cot .cot 1 A B (b) If o A B 180 , then (i) cos cos 0 A B (ii)sin sin 0 A B (iii)tan tan 0 A B (c) If A B 360o , then (i) sin sin 0 A B (ii) cos cos 0 A B (iii)tan tan 0 A B W.E-2: tan130o.tan140o Sol: 130o 140o 270o tan130o.tan140o 1 W.E-3: 2 2 sin 55o sin 35o Sol: 55o 35o 90o 2 2 sin 55o sin 35o 1 (i) If a b c cos sin and a b sin cos =K then 2 2 2 2 a b c k (ii) If a sec b tan c and 2 2 2 2 a tan bsec k then a b c k (iii) If a cosec bcot c and 2 2 2 2 a b ec k then a b c k cot cos W.E-4: If 8cos 6sin 5 then 8sin 6cos Sol: Let 8sin 6cos k 2 2 2 2 a b c k 2 2 2 2 8 6 5 k 2 k k 75 5 3 2 0 0 0 0 x if x x x x if x if x for example the value of 2 cos 100o cos100o cos100o cos100o 0 (i)sin sin( ) sin(2 ) ....... 0 .... sin( ) sin if n is odd n if nis even (ii) cos cos( ) cos(2 ) ....... 0 .... cos( ) cos if n is odd n if nis even