Content text Inverse Trigonometry Varsity Practice Sheet Solution.pdf
07 wecixZ w·KvYwgwZK dvskb I w·KvYwgwZK mgxKiY Inverse Trigonometric Functions and Trigonometric Equations weMZ mv‡j DU-G Avmv cÖkœvejx 1. wb‡Pi †KvbwU sin–1 2 3 Gi mgvb? [DU 23-24] cot 5 2 cot–1 5 2 tan 5 tan–1 1 5 DËi: cot–1 5 2 e ̈vL ̈v: sin–12 3 = cot–1 5 2 3 2 – 2 2 = 5 2 3 2. 2tan–1 1 3 + tan–1 1 7 = ? [DU 23-24] 4 2 1 0 DËi: 4 e ̈vL ̈v: 2tan–1 1 3 + tan–1 1 7 = tan–1 2 3 1 – 1 9 + tan–1 1 7 = tan–1 3 4 + tan–1 1 7 = tan–1 3 4 + 1 7 1 – 3 4 1 7 = tan–1 25 28 25 28 = 4 3. tan + cot = 2cosec, 0 < 2 n‡j, Gi gvb KZ? [DU 22-23] 4 5 3 6 3 DËi: 3 e ̈vL ̈v: tan + cot = 2cosec sin cos + cos sin = 2 sin 1 sincos = 2 sin sin = 2sincos sin– 2cos nq, sin = 0 = nn Z A_ev, 1 – 2cos = 0 cos = 1 2 = cos 3 = 2n 3 ; n Z cÖ`Ë e ̈ewai g‡a ̈ gvb = 0, 3 Ackb Abyhvqx DËi = 3 A_ev, Option Test: Ackb 5 3 , 0 ≤ < 2 e ̈ewai AšÍfz©3 bq| Ackb = 3 L.H.S = tan 3 + cot 3 = 3 + 1 3 = 4 3 R.H.S = 2cosec 3 = 2 2 3 = 4 3 Ackb mwVK DËi| 4. cosec2 tan–1 1 2 – 3sec2 (cot ) –1 3 = ? [DU 21-22] 15 2 9 1 25 DËi: 1
2 Higher Math 2nd Paper Chapter-7 e ̈vL ̈v: cosec2 tan–11 2 – 3sec2 (cot ) –1 3 2 1 2 3 1 5 = {cosec(cosec )} –1 5 2 – 3 sec sec–1 2 3 2 = 5 – 3 4 3 = 5 – 4 = 1 5. tan–1 2 3 + cos–1 2 13 = ? [DU 18-19] tan–1 5 9 tan–1 3 7 2 4 DËi: 2 e ̈vL ̈v: tan–1 2 3 + cos–1 2 13 = tan–1 2 3 + tan–1 3 2 = tan–1 2 3 + cot–1 2 3 = 2 3 2 13 6. cot cot3 = 1 mgxKi‡Yi mvaviY mgvavbÑ [DU 18-19] (2n + 1) 4 (2n + 1) 8 n 4 (2n + 1) 2 DËi: (2n + 1) 8 e ̈vL ̈v: cot cot3 = 1 cot cot3 – 1 = 0 cot cot3 – 1 cot + cot3 = 0 cot4 = 0 = cot 2 4 = n + 2 = n 4 + 8 = (2n + 1) 8 ; n Z 7. sin–1 x + sin–1 y = 2 n‡j, †KvbwU mwVK? [DU 17-18; KU 17-18] x 2 + y2 = 1 x 2 – y 2 = 1 x + y = 1 x – y = 1 DËi: x 2 + y2 = 1 e ̈vL ̈v: sin–1 x + sin–1 y = 2 sin–1 x = 2 – sin–1 y x = sin 2 – sin–1 y x = cos(sin ) –1 y x = 1 – y 2 x 2 = 1 – y 2 x 2 + y2 = 1 8. 0 x 90 n‡j, sin3x = cosx mgxKi‡Yi mgvavb n‡eÑ [DU 17-18] 0, 45 0, 22.5 45, 45 22.5, 45 DËi: 22.5, 45 e ̈vL ̈v: sin3x = cosx cos 2 – 3x = cosx x = 2n 2 – 3x (+) wb‡q, x = 2n + 2 – 3x 4x = 2n + 2 x = n 2 + 8 0 x 90 e ̈ewai g‡a ̈, x = 22.5, 45 (–) wb‡q, x = 2n – + 3x – 2x = 2n – 2x = 2 – 2n x = 4 – n 9. hw` tan–1 x + 1 3 + tan–1 x – 1 3 = tan–1 2 nq, Z‡e x Gi gvb n‡eÑ [DU 16-17] – 5 6 – 1 3 1 3 2 3 DËi: 2 3 e ̈vL ̈v: tan–1 x + 1 3 + tan–1 x – 1 3 = tan–1 2 tan–1 x + 1 3 + x – 1 3 1 – x 2 – 1 9 = tan–1 2
wecixZ w·KvYwgwZK dvskb I w·KvYwgwZK mgxKiY Varsity Practice Sheet Solution 3 tan–1 2x 10 9 – x 2 = tan–1 2 2x = 2 10 9 – x 2 x = 10 9 – x 2 9x2 + 9x – 10 = 0 x = – 9 9 2 – 4 9(– 10) 2 9 x = – 9 441 18 x = – 9 21 18 x = 2 3 [+ ve wPý wb‡q] A_ev, Option Test: x = 2 3 ewm‡q, tan–1 x + 1 3 + tan–1 x – 1 3 = tan–1 2x 10 9 – x 2 = tan–1 4 3 10 9 – 4 9 = tan–1 4 3 9 6 = tan–1 2 10. sec2 + tan2 = 5 3 ; 0 < < Gi mgvavb †KvbwU? [DU 16-17; RU 21-22] 3 , 5 6 – 6 , 5 6 6 , – 5 6 6 , 5 6 DËi: 6 , 5 6 e ̈vL ̈v: sec2 + tan2 = 5 3 1 + tan2 + tan2 = 5 3 2tan2 = 2 3 tan2 = 1 3 tan = 1 3 = tan 6 = n 6 ; n Z = 6 , 5 6 [⸪ 0 ] 11. cot2 – ( 3 + 1)cot + 3 = 0, 0 < < 2 , = KZ? [DU 15-16; JU 18-19] 6 , 3 4 , 3 3 , 5 6 , 4 DËi: 6 , 4 e ̈vL ̈v: cot2 – ( 3 + 1)cot + 3 = 0 cot2 – 3cot – cot + 3 = 0 cot(cot – 3) – 1(cot – 3) = 0 (cot – 1)(cot – 3) = 0 nq, cot – 1 = 0 cot = 1 tan = 1 = tan 4 = n + 4 ; n Z A_ev, cot – 3 = 0 cot = 3 tan = 1 3 = tan 6 = n + 6 ; n Z = 6 , 4 ⸪ 0 2 A_ev, Option Test K‡iv| 12. sec2 (cot–1 3) + cosec2 (tan–1 2) = ? [DU 15-16] 85 36 36 85 10 9 9 10 DËi: 85 36 e ̈vL ̈v: sec2 (cot–1 3) + cosec2 (tan–1 2) = 1 + tan2 tan–11 3 + 1 + cot2 cot–11 2 = 2 + 1 9 + 1 4 = 85 36 13. cosec + cot = 3, (0 < < 2) n‡j Gi gvbÑ [DU 14-15; IU 16-17] 6 4 3 2 3 DËi: 3 e ̈vL ̈v: cosec + cot= 3 1 sin + cos sin = 3 cos – 3sin + 1 = 0
4 Higher Math 2nd Paper Chapter-7 cos – 3sin = – 1 1 2 cos – 3 2 sin = – 1 2 cos 3 + = cos 2 3 3 + = 2 3 = 3 A_ev, Option Test K‡iv| 14. sin–1 4 5 + cos–1 2 5 mgvbÑ [DU 14-15] tan–1 2 11 sin–1 11 2 tan–1 11 2 cos–1 11 2 DËi: tan–1 11 2 e ̈vL ̈v: sin–1 4 5 + cos–1 2 5 = tan–14 3 + tan–11 2 = tan–1 4 3 + 1 2 1 – 4 3 1 2 = tan–1 11 6 6 – 4 6 = tan–111 2 5 3 5 1 2 4 15. arc tan sin arc cos 2 3 mgvbÑ [DU 13-14] 2 3 4 6 DËi: 6 e ̈vL ̈v: arc Øviv inverse †evSvq arc tan sin arc cos 2 3 = tan–1 sin cos–1 2 3 2 1 3 = tan–1 sin sin–1 1 3 = tan–1 1 3 = 6 16. cot + 3 = 2cosec mgxKi‡Yi mgvavbÑ [DU 13-14] = 2n – 3 = 2n + 3 = 2n + 6 = 2n – 6 DËi: = 2n + 3 e ̈vL ̈v: cot + 3 = 2cosec cos sin + 3 = 2 sin cos + 3sin = 2 1 2 cos+ 3 2 sin = 1 cos – 3 = 1 – 3 = 2n = 2n + 3 ; n Z 17. cotx – tanx = 2 mgxKiYwUi mvaviY mgvavbÑ [DU 05-06] n 4 n 2 (4n + 1) 8 (4n + 1) 2 DËi: (4n + 1) 8 e ̈vL ̈v: cotx – tanx = 2 cosx sinx – sinx cosx = 2 cos2 x – sin2 x sinx cosx = 2 cos2x = sin2x sin2x cos2x = 1 tan2x = tan 4 2x = n + x = n 2 + 8 x = (4n + 1) 8 ; n Z weMZ mv‡j GST-G Avmv cÖkœvejx 1. sin–1 p + sin–1 q = 2 n‡j, p 1 – q 2 + q 1 – p 2 Gi gvb KZ? [GST 23-24] – 1 0 1 2 DËi: 1