Content text 01. Opening.pdf
Decision Tree Advanced Machine Learning pacmann.io © 2022 – Pacmann AI
pacmann.io © 2022 – Pacmann AI 2 References • An Introduction to Statistical Learning Gareth James, et. al. • The Elements of Statistical Learning Trevor Hastie, et. al. • Lecture Notes ○ https://cs229.stanford.edu/notes2021fall/lec ture11-decision-trees.pdf ○ MIT 15.097 lec-08 - Cynthia Rudin
pacmann.io © 2022 – Pacmann AI 3 Outcomes • Understand how the Decision Tree (DT) works • Understand how to solve the DT for Classification and Regression problem
pacmann.io © 2022 – Pacmann AI 4 Outlines • The Basics • Create a Tree for Dummies • How to Split a Node ○ Categorical Predictors ○ Numerical Predictors ○ Feature Split Algorithm • Greedy Algorithm • Avoid Overfitting • Model Algorithm