Content text C1-B1-TÍNH ĐƠN ĐIỆU và CỰC TRỊ CỦA HÀM SỐ-P1.docx
ỨNG DỤNG ĐẠO HÀM Chương 01 Trang 1 ĐƠN ĐIỆU & CỰC TRỊ CỦA HÀM SỐ Bài 1. Chương 01 A Lý thuyết 1. Tính đồng biến, nghịch biến của hàm số Định nghĩa: Kí hiệu là khoảng; đoạn; nửa khoảng. Giả sử hàm số xác định trên . Hàm số Gọi là đồng biến trên nếu mà thì . Gọi là nghịch biến trên nếu mà thì . » Hàm số đồng biến trên thì đồ thị đi lên từ trái sang phải (Hình 1a). » Hàm số nghịch biến trên thì đồ thị đi xuống từ trái sang phải (Hình 1b). Hình 1a Hình 1b Chú ý 2. Tính đơn điệu của hàm số Định lý: Cho hàm số có đạo hàm trên . Nếu với mọi thuộc thì hàm số đồng biến trên . Nếu với mọi thuộc thì hàm số nghịch biến trên . » Định lí vẫn đúng trong trường hợp tại một số hữu hạn điểm trong . » Nếu với mọi thì hàm số không đổi trên khoảng . Chú ý