PDF Google Drive Downloader v1.1


Report a problem

Content text C5 - 1 MO DAU VE DUONG TRON.docx


Bài 1: Cho hình chữ nhật ABCD có ABa , BCb . Chứng minh rằng bốn điểm A , B , C , D cùng thuộc một đường tròn. Xác định tâm và bán kính của đường tròn đó. Bài 2: Cho tam giác ABC , các đường cao BD và CE . Trên cạnh AC lấy điểm M . Kẻ tia Cz vuông góc với tia BM tại F . Chứng minh rằng năm điểm B , C , D , E , F cùng thuộc một đường tròn. Bài 3: Chứng minh rằng bốn trung điểm của bốn cạnh hình thoi cùng thuộc một đường tròn. Dạng 2: Xác định vị trí tương đối của điểm M với đường tròn ()O . Bài 1: Gọi O là trung điểm của đoạn thẳng AB . Chứng minh rằng đường tròn ;OOA đi qua điểm B . Bài 2: Cho tam giác ABC vuông tại A . Chứng minh rằng điểm A thuộc đường tròn đường kính BC . Bài 3: Trong mặt phẳng tọa độ Oxy , cho các điểm 3;0A , 2;0B , 0;4C . Vẽ hình và cho biết trong các điểm đã cho, điểm nào nằm trên, điểm nào nằm trong, điểm nào nằm ngoài đường tròn ;3O . Bài 4: Cho đường tròn ;OR và năm điểm M , N , P , H , K . So sánh độ dài các đoạn thẳng OM , ON , OH , OK , OP với R . Bài 5: Cho đường tròn ;OR và hai điểm M , N sao cho M nằm trong và N nằm ngoài ;OR . Hãy so sánh OMN và ONM . Dạng 3: Tâm đối xứng, trục đối xứng của đường tròn Bài 1: Xác định tâm đối xứng và trục đối xứng của bánh xe trong hình vẽ sau: Bài 2: Nêu cách chia một cái bánh có dạng hình tròn tâm O (hình vẽ) thành hai phần bằng nhau. Bài 3: Cho đường tròn ()I . a)Tìm tâm đối xứng của ()I . b) Vẽ hai trục đôi xứng của ()I . Bài 4: Bạn Oanh có một mảnh giấy hình tròn nhưng không còn dấu vết của tâm. Theo em, Oanh làm thế nào để tìm lại được tâm của mảnh giấy hình tròn đó? Bài 5: Cho điểm M nằm trên đường tròn ()O đường kính AB . Sử dụng tính đối xứng của đường tròn ()O , hãy nêu cách tìm: a) Điểm N đôi xứng với điểm M qua tâm O . b) Điểm P đối xứng với điểm M qua đường thẳng AB .
Bài 6: Cho đường tròn tâm O và hai điểm A , B thuộc ()O . Gọi d là đường trung trực của đoạn AB . Chứng minh rằng d là một trục đối xứng của ()O . B. BÀI TẬP VẬN DỤNG Bài 1: Trong mặt phẳng tọa độ Oxy , cho các điểm 0;2M , 0;3N , 2;1P . Vẽ hình và cho biết trong các điểm đã cho, điểm nào nằm trên, điểm nào nằm trong, điểm nào nằm ngoài đường tròn ;5O ? Vì sao? Bài 2: Cho đường tròn ()O , bán kính 5cm và bốn điểm A , B , C , D thỏa mãn 3cmOA , 4cmOB , 7cmOC , 5cmOD . Hãy cho biết mỗi điểm A , B , C , D nằm trong, nằm ngoài, nằm trên hay nằm ngoài đường tròn . Bài 3: Cho hai đường tròn ;6cmA và ;4cmB cắt nhau tại C và D , 8cmAB . Gọi I , K lần lượt là giao điểm của hai đường tròn đã cho với đoạn thẳng AB . a) Tính độ dài của các đoạn thẳng CA , CB , DA và DB . b) Điểm I có phải là trung điểm của đoạn thẳng AB không? c) Tính độ dài của đoạn thẳng IK . Bài 4: Cho đường tròn ;2cmO và ;2cmA cắt nhau tại C , D điểm A nằm trên đường tròn tâm O . a) Vẽ đường tròn ;2cmC b) Đường tròn ;2cmC có đi qua hai điểm O và A hay không? Vì sao? Bài 5: Ch tam giác ABC , cạnh BC cố định, 4cmAB a) Hỏi điểm A di động trên đường nào? b) Trung điểm M của AC di động trên đường nào? Bài 6: Trong hệ trục tọa độ Oxy cho 0;4E , 2;0P và M là điểm thuộc đoạn EP sao cho tung độ của M bằng 2. Vẽ đường tròn tâm M bán kính MO . Xác định vị trí tương đối của E , P so với đường tròn ;MMO . Bài 7: Cho đường tròn ;OR và dây AB khác đường kính. Gọi M là trung điểm của AB . a) Đường thẳng OM có phải là đường trung trực của đoạn thẳng AB hay không? Vì sao? b) Tính khoảng cách từ điểm O đến đường thẳng AB , biết 5cmR , 8cmAB . Bài 8: Cho tam giác ABC vuông tại A có 3cmAB , 4cmAC . Chứng minh rằng các điểm A , B , C cùng thuộc một đường tròn. Tính bán kính đường tròn đó.
Bài 9: Cho hình chữ nhật ABCD có 18cmAD và 12cmCD . Chứng minh rằng bốn điểm A , B , C , D cùng thuộc một đường tròn. Tính bán kính của đường tòn đó. Bài 10: Cho tam giác ABC có hai đường cao BB và CC . Gọi O là trung điểm của BC . Chứng minh đường tròn tâm O bán kính OB đi qua B , C , C . Bài 11: Cho tứ giác ABCD có 90BD . Chứng minh bốn điểm A , B , C , D cùng nằm trên một đường tròn. Bài 12: Cho hai đường tròn cùng tâm ;OR , ;Or với Rr . Các điểm A , B thuộc đường tròn ;OR , các điểm A , B thuộc đường tròn ;Or sao cho O , A , A thẳng hàng; ,,OBB thẳng hàng và điểm O không thuộc đường thẳng AB . Chứng minh: a)  OAOB OAOB b) //ABAB . Bài 13: Cho đường tròn ()O , đường thẳng d đi qua O và điểm A thuộc ()O nhưng không thuộc d . Gọi B là điểm đối xứng với A qua ;d C và D lần lượt là điểm đối xứng của A và B qua O . a) Ba điểm B , C và D có thuộc ()O không? Vì sao? b) Chứng minh tứ giác ABCD là hình chữ nhật c) Chứng minh rằng C và D đối xứng với nhau qua d . Bài 14: Cho hình vông ABCD có E là giao điểm của hai đường chéo a) Chứng minh rằng có một đường tròn đi qua các điểm A , B , C và D . Xác định tâm đối xứng và chỉ ra hai trục đối xứng của đường tròn đó. b) Tính bán kính của đường tròn ở câu a), biết rằng hình vuông có cạnh bằng 3cm . Có file đáp án riêng

Related document

x
Report download errors
Report content



Download file quality is faulty:
Full name:
Email:
Comment
If you encounter an error, problem, .. or have any questions during the download process, please leave a comment below. Thank you.