PDF Google Drive Downloader v1.1


Report a problem

Content text KNTTVCS-Đại số 12-Chương 1-Bài 4-Khảo sát và vẽ đồ thị hàm số-Chủ đề 4-Ứng dụng thực tiễn-LỜI GIẢI.pdf

Đại số 12 - Chương 1 - Ứng dụng đạo hàm để khảo sát và vẽ đò thị hàm số Trang 1 CHỦ ĐỀ 4 ỨNG DỤNG THỰC TIỄN PHẦN I. Câu trắc nghiệm nhiều phương án lựa chọn. Mỗi câu hỏi thí sinh chỉ chọn một phương án. Câu 1. Khi máu di chuyển từ tim qua các động mạch chính rồi đến các mao mạch và quay trở lại qua các tĩnh mạch, huyết áp tâm thu (tức là áp lực của máu lên động mạch khi tim co bóp) liên tục giảm xuống. Giả sử một người có huyết áp tâm thu P (tính bằng mmHg) được cho bởi hàm số     2 2 25 125 , 0 10 1 t P t t t      , trong đó thời gian t được tính bằng giây. Tốc độ thay đổi của huyết áp sau 5 giây kể từ khi máu rời tim là: A. 375 13 . B. 125 13 . C. 250 169 . D. 375 169 . Lời giải Chọn C Tốc độ thay đổi của huyết áp sau t giây là:       2 2 200 ' , 0 10 1 t P t t t        250 ' 5 169    P Tốc độ thay đổi của huyết áp sau 5 giây kể từ khi máu rời tim là giảm 250 169 Câu 2. Người quản lí của một khu chung cư có 100 căn hộ cho thuê nhận thấy rằng tất cả các căn hộ sẽ có người thuê nếu giá thuê một căn hộ là 8 triệu đồng một tháng. Một cuộc khảo sát thị trường cho thấy rằng, trung bình cứ mỗi lần tăng giá thuê căn hộ thêm 100 nghìn đồng thì sẽ có thêm một căn hộ bị bỏ trống. Người quản lí nên đặt giá thuê mỗi căn hộ là bao nhiêu để doanh thu là lớn nhất? A. 800 000 000 (đồng). B. 8 100 000 (đồng). C. 8 000 000 (đồng). D. 9 000 000 (đồng). Lời giải Chọn D Gọi x là số lần tăng giá (0 < x < 100). Mỗi lần tăng giá thì số căn hộ cho thuê là 100 – x (căn). Số tiền thuê căn hộ sau mỗi lần tăng là: 8 000 000 + 100 000x. Khi đó tổng số tiền cho thuê căn hộ 1 tháng là: y = (8 000 000 + 100 000x)(100 – x) = 800 000 000 – 8 000 000x + 10 000 000x – 100 000x2 = 800 000 000 + 2 000 000x – 100 000x2 Bài toán trở thành tìm x để y lớn nhất
Đại số 12 - Chương 1 - Ứng dụng đạo hàm để khảo sát và vẽ đò thị hàm số Trang 2 Ta có y' = −200 000x + 2 000 000; y' = 0  x = 10. Bảng biến thiên Dựa vào bảng biến thiên ta thấy doanh thu lớn nhất khi người quản lí đặt giá thuê căn hộ là 8 000 000 + 100 000.10 = 9 000 000 (đồng). Câu 3. Một đội bóng đá thi đấu trong một sân vận động có sức chứa 55 000 khán giả. Với giá mỗi vé là 100 nghìn đồng, số khán giả trung bình là 27 000 người. Qua thăm dò dư luận, người ta thấy rằng mỗi khi giá vé giảm thêm 10 nghìn đồng, sẽ có thêm khoảng 3000 khán giả. Hỏi ban tổ chức nên đặt giá vé là bao nhiêu để doanh thu từ tiền bán vé là lớn nhất? A. 100 000 (đồng). B. 80 000 (đồng). C. 90 000 (đồng). D. 95 000 (đồng). Lời giải Chọn D Gọi x x 0    ) là số lần giảm giá vé. Khi đó giá vé sau khi giảm là 100 10  x (nghìn đồng). Sau mỗi lần giảm giá thì có thêm 3000x khán giả. Do đó tổng số khán giả đến xem là 27000 + 3000x. Vì sân vận động có sức chứa 55 000 khán giá nên 27000 3000 55000 28 3 x x     Doanh thu từ tiền bán vé là:    2 y x x x x        27000 3000 100 10 30000 30000 2700000 Yêu cầu bài toán trở thành tìm giá trị lớn nhất của hàm số   2 y x x x      30000 30000 2700000 0 Tập xác định D = (0; +∞). ' 60000 30000 1 ' 0 2 y x y x       Bảng biến thiên
Đại số 12 - Chương 1 - Ứng dụng đạo hàm để khảo sát và vẽ đò thị hàm số Trang 3 Dựa vào bảng biến thiên, ta thấy ban tổ chức nên đặt giá vé là 95 nghìn đồng thì doanh thu tiền bán vé là lớn nhất. Câu 4. Anh An chèo thuyền từ điểm A trên bờ một con sông thẳng rộng 3 km và muốn đến điểm B ở bờ đối diện cách 8 km về phía hạ lưu càng nhanh càng tốt (hình vẽ). Anh An có thể chèo thuyền trực tiếp qua sông đến điểm C rồi chạy bộ đến B, hoặc anh có thể chèo thuyền thẳng đến B, hoặc anh cũng có thể chèo thuyền đến một điểm D nào đó giữa C và B rồi chạy bộ đến B. Nếu vận tốc chèo thuyền là 6 km/h và vận tốc chạy bộ là 8 km/h thì anh An phải chèo thuyền sang bờ ở điểm nào để đến được B càng sớm càng tốt? (Giả sử rằng vận tốc của nước là không đáng kể so với vận tốc chèo thuyền của anh An). A. Anh An phải chèo thuyền đến điểm D cách C một đoạn 8 km thì sẽ đến B sớm nhất. B. Anh An phải chèo thuyền đến điểm D cách C một đoạn 9 7 7 km thì sẽ đến B sớm nhất.. C. Anh An phải chèo thuyền đến điểm D cách C một đoạn 3 7 km thì sẽ đến B sớm nhất.. D. Anh An phải chèo thuyền đến điểm D cách C một đoạn 73 6 km thì sẽ đến B sớm nhất.. Lời giải Chọn B Gọi độ dài đoạn CD là x (km, 0 8  x ). Khi đó độ dài quãng đường AD là 2 x 9 (km).

Related document

x
Report download errors
Report content



Download file quality is faulty:
Full name:
Email:
Comment
If you encounter an error, problem, .. or have any questions during the download process, please leave a comment below. Thank you.