Content text IX_E-TECHNO_VOL-2_ADDITIONAL PROBLEMS_221-260.pdf
e-Techno Text Book IX-Mathematics (Vol-2) 221 ADDITIONAL PROBLEMS QUADRATIC EXPRESSIONS & EQUATIONS SYNOPSIS - 1 1. The harmonic mean of the roots of the equation 5 2 4 5 8 2 5 0 2 x x is 1) 2 2) 4 3) 6 4) 8 2. If , are the roots of 3x2 + 5x - 7 = 0, then the value of 2 2 3 5 1 3 5 1 is 1) 63 67 2) 441 67 3) 441 109 4) 63 109 3. The value of 8 2 8 2 8 2 8 ..... is 1) 10 2) 6 3) 8 4) 4 4. The equation 2 2 log 3 log 1 3 x x has 1) One root 2) Two roots 3) Infinite roots 4) No root 5. If k > 0 and the product of the roots of the equation x2 -3kx+2e2logk-1=0 is 7 then the sum of the roots is 1) 2 2) 4 3) 6 4) 8 6. The quadratic equation whose roots are i i 2 3 2 3 and i i 2 3 2 3 is 1) 5x2 -2x+5=0 2) 5x2+2x+5=0 3) 5x2+2x-5=0 4) 5x2 -2x-5=0 7. 2 2 10 10 log log 3 1 1 x x x x then x _________. 1) 1 10 2) 2 3) 3 10 4)1 HINTS & SOLUTIONS 1. (2) H.M. = 2 2 8 2 5 4 5 = 4 2. (2) 2 2 2 2 2 1 1 2 b ac a b a b a c 25 42 9 49 = 441 67 3. (4) Let x to 8 2 8 2 8 2 8 ..... 8 2x 2 x x2 8 0
e-Techno Text Book IX-Mathematics (Vol-2) 223 6. The graph of the function 2 y x a x a 16 8 5 7 5 is strictly above the x axis then ‘a’ must satisfy the inequality 1) 15 2 a 2) 2 1 a 3) 5 7 a 4) 2 15 a COMPREHENSION TYPE: If and x x x 0 , If and x x x 0 , If and x x x 0 , , If a and x x x 0 , , 7. If and are real and distinct roots of 2 2 2 1 1 | | x x satisfy a a then a belongs to 1) 1 1 ,0 0, 2 2 U 2) 1 1 ,0 0, 2 5 U 3) 1 1 ,0 0, 5 5 U 4) None 8. The equation 1 1 b x a x a x has no real roots then 1) 0 1 a 2) 0 1 b 3) 0 2 a 4) 0 2 b 9. The set of all real numbers x for which 2 x x x 2 0 , is 1) ,2 2, 2) , 2 2, 3) , 1 1, 4) 2, HINTS & SOLUTIONS 1. [2] 2 8 2 0 2 x x ; 4 1 0 2 x x root = 2 3 2 4 16 4 , 2 3 2 3, 2. (2) Let 3 x t 1 2 3 3 4 0 4 3 0 x x t t t t 1 3 0 1 3 1 3 3 0,1 x t x 3. (2); Let , be the roots of x2 + abx + c = 0 and , be the roots of x2 + acx + b = 0, being the common root. ab ------- (1) c ------- (2)
IX-Mathematics (Vol-2) e-Techno Text Book 224 ac ------- (3) b --------(4) From (1) – (3), a c b From (2) – (4), c b c b a c b or 1 a . from (2) and (4), c a , i.e., ac and b, a i.e., = ab. The quadratic equation whose roots are , is 2 x x 0 or x2 – (ac + ab) x + ac.ab = 0 or x2 – a(b + c)x + a2bc = 0. 4. (4) 116 0 Roots are imaginary and conjugate to each other Both roots are common 2 3 3 8 15 a b c a b c 3 , 4 , 5 ABC is right angle triangle 2 2 2 c a b 5. [3] x x 11 7 0 and x x 2 2 0 x 11, 2 2,7 6. (1) 2 16 8 5 7 5 0 x a x a x R 0 2 64 5 64 7 5 0 a a a a a 15 2 0 15 2 7. (2) 2 a ax x a 0 0 has two roots 1 and , 1 a disc = 2 2 1 4 0;4 1 0 2 1 2 1 0 1 1 1 2 2 a a a a a 1 a 1 1 2 4 a a 2 1 4 1 a 2 1 5 a ; 2 1 1 1 5 5 5 a a 8. (4) 1 1 b x a x a x 2 2 2x b x a x 2 2 2 2x bx a b 2 2 2 a b x b For the above equation have no real roots 2 x 0 2 0 0 2 0 2 2 a b b b b b b ; 0 2 b