Content text Chương 1_Bài 4.2_ _Đê bài.pdf
BÀI GIẢNG TOÁN 12-CTST-PHIÊN BẢN 2025-2026 1 BÀI 4.2: ỨNG DỤNG ĐẠO HÀM ĐỂ GIẢI QUYẾT MỘT SỐ VẤN ĐỀ LIÊN QUAN ĐẾN THỰC TIỄN A. KIẾN THỨC CƠ BẢN CẦN NẮM 1. TỐC ĐỘ THAY ĐỔI CỦA MỘT ĐẠI LƯỢNG Giả sử y là một hàm số của x và ta viết y f x = ( ). Nếu x thay đổi từ 1x đến 2 x , thì sự thay đổi của x là 2 1 D = - x x x và sự thay đổi tương ứng của y là D = - y f x f x 2 1 . Tỉ số 2 1 2 1 y f x f x x x x D - = D - được gọi là tốc độ thay đổi trung bình của y đối với x trên đoạn x x 1 2 ; . Giới hạn 2 1 2 1 0 2 1 lim lim x x x y f x f x D ® ® x x x D - = D - được gọi là tốc độ thay đổi tức thời của y đối với x tại điểm 1 x x = . Như vậy, đạo hàm f a¢( ) là tốc độ thay đổi tức thời của đại lượng y f x = ( ) đối với x tại điêm x a = . Dưới đây, chúng ta xem xét một số ứng dụng của ý tưởng này đối với vật lí, hoá học, sinh học và kinh tế: Nếu s s t = ( ) là hàm vị trí của một vật chuyển động trên một đường thẳng thì v s t = ¢( ) biểu thị vận tốc tức thời của vật (tốc độ thay đổi củ̉a độ dịch chuyển theo thời gian). Tốc độ thay đổi tức thời của vận tốc theo thời gian là gia tốc tức thời của vật: a t v t s t ( ) ( ) ( ) = = ¢ ¢¢ . Nếu C C t = là nồng độ của một chất tham gia phản ứng hoá học tại thời điểm t , thì C t ¢( ) là tốc độ phản ứng tức thời (tức là độ thay đổi nồng độ) của chất đó tại thời điểm t . Nếu P P t = ( ) là số lượng cá thể trong một quần thể động vật hoặc thực vật tại thời điểm t , thì P t ¢( ) biểu thị tốc độ tăng trưởng tức thời của quần thể tại thời điểm t . Nếu C C x = ( ) là hàm chi phí, tức là tổng chi phí khi sản xuất x đơn vị hàng hoá, thì tốc độ thay đổi tức thời C x ¢( ) của chi phí đối với số lượng đơn vị hàng được sản xuất được gọi là chi phí biên. Về ý nghĩa kinh tế, chi phí biên C x ¢( ) xấp xỉ với chi phí để sản xuất thêm một đơn vị hàng hoá tiếp theo, tức là đơn vị hàng hoá thứ x +1 (xem SGK Toán 11 tập hai, trang 87, bộ sách Kết nối tri thức với cuộc sống). Ví dụ 1. Khi bỏ qua sức cản của không khi, độ cao (mét) của một vật được phóng thẳng đứng lên trên từ điểm cách mặt đất 2 m với vận tốc ban đầu 24,5 m/ s là 2 h t t t ( ) 2 24,5 4,9 = + - (theo Vật lí đọi cương, NXB Giáo dục Việt Nam, 2016). a) Tìm vận tốc của vật sau 2 giây. b) Khi nào vật đạt độ cao lớn nhất và độ cao lớn nhất đó là bao nhiêu? c) Khi nào thì vật chạm đất và vận tốc của vật lúc chạm đất là bao nhiêu? Lời giải a) Theo ý nghĩa cơ học của đạo hàm, vận tốc của vật là v h t t = = - ¢( ) 24,5 9,8 ( m/ s).
BÀI GIẢNG TOÁN 12-CTST-PHIÊN BẢN 2025-2026 2 Do đó, vận tốc của vật sau 2 giây là v(2) 24,5 9,8 2 4,9( m/ s) = - × = . b) Vì h t( ) là hàm số bậc hai có hệ số a = - < 4,9 0 nên h t( ) đạt giá trị lớn nhất tại 24,5 2,5 2 2 4,9 b t a = - = = × (giây). Khi đó, độ cao lớn nhất của vật là h m (2,5) 32,625( ) = . c) Vật chạm đất khi độ cao bằng 0, tức là 2 h t t = + - = 2 24,5 4,9 0 , hay t » 5,08 (giây). Vận tốc của vật lúc chạm đât là v(5,08) 24,5 9,8 5,08 25,284( m/ s) = - × = - . Vận tốc âm chứng tỏ chiều chuyển động của vật là ngược chiều dương (hướng lên trên) của trục đã chọn (khi lập phương trình chuyển động của vật). Ví dụ 2. Giả sử số lượng của một quần thể nấm men tại môi trường nuôi cấy trong phòng thí nghiệm được mô hinh hoá bằng hàm số 0,75 ( ) t a P t b e- = + , trong đó thời gian t được tính bằng giờ. Tại thời điểm ban đầu t = 0, quần thể có 20 tế bào và tăng với tốc độ 12 tế bào/giờ. Tìm các giá trị của a và b . Theo mô hình này, điều gì xảy ra với quần thể nấm men về lâu dài? Lời giải Ta có: 0,75 2 0,75 0,75 e ( ) , 0 e t t a P t t b - - ¢ = 3 + . Theo đề bài, ta có: P(0) 20 = và P¢(0) 12 = . Do đó, ta có hệ phương trình: 2 20 20( 1) 1 15 0,75 12. 12 1 ( 1) a a b b a b b ì = ì = + ï ï ï + í í Û = ï ï = î + ïî + Giải hệ phương trình này, ta được a = 25 và 1 4 b = . Khi đó, 0,75 2 0,75 18,75e ( ) 0, 0 1 e 4 t t P t t - - ¢ = > " 3 æ ö ç ÷ + è ø , tức là số lượng quần thể nấm men luôn tăng. Tuy nhiên, do 0.75 25 lim ( ) lim 100 1 e 4 t t t P t ®+¥ ®+¥ - = = + nên số lượng quần thể nấm men tăng nhưng không vượt quá 100 tế bào. Ví dụ 3. Giả sử chi phí C x( ) (nghìn đồng) để sản xuất x đơn vị của một loại hàng hoá nào đó được cho bởi hàm số 2 3 C x x x x ( ) 30000 300 2,5 0,125 = + - + . a) Tìm hàm chi phí biên. b) Tìm C¢(200) và giải thích ý nghĩa.
BÀI GIẢNG TOÁN 12-CTST-PHIÊN BẢN 2025-2026 3 c) So sánh C¢(200) với chi phí sản xuất đơn vị hàng hoá thứ 201. Lời giải a) Hàm chi phí biên là 2 C x x x ¢( ) 300 5 0,375 = - + . b) Ta có: 2 C¢(200) 300 5 200 0,375 200 14300 = - × + × = . Chi phí biên tại x = 200 là 14300 nghìn đồng, nghĩa là chi phí để sản xuất thêm một đơn vị hàng hoá tiếp theo (đơn vị hàng hoá thứ 201) là khoảng 14300 nghìn đồng. c) Chi phí sản xuất đơn vị hàng hoá thứ 201 làC C (201) (200) 1004372,625 990000 14372,625 - = - = (nghìn đồng) Giá trị này xấp xỉ với chi phí biên C¢(200) đã tính ở câu b. Ví dụ 4. Để loại bỏ x% chất gây ô nhiễm không khí từ khí thải của một nhà máy, người ta ước tính chi phí cần bỏ ra là 300 ( ) (triêu dông), 0 100. 100 x C x x x = £ < - Khảo sát sự biến thiên và vẽ đồ thị của hàm số y C x = ( ). Tự đó, hãy cho biết: a) Chi phí cần bỏ ra sẽ thay đổi như thế nào khi x tăng? b) Có thể loại bỏ được 100% chất gây ô nhiễm không khí không? Vì sao? Lời giải Xét hàm số 300 ( ) ,0 100 100 x y C x x x = = £ < - . Ta có: - 2 30000 0 (100 ) y x ¢ = > - , với mọi xÎ[0;100). Do đó hàm số luôn đồng biến trên nửa khoảng [0;100). - 100 100 300 lim ( ) lim x x 100 x C x x ® ® - - = = +¥ - , nên đồ thị hàm số có tiệm cận đứng là x =100 . Bảng biến thiên: Đồ thị hàm số như Hình 1.34.