Content text Varsity Weekly-1 (Set-A) Solution.pdf
1 Varsity Weekly-01 [A (Solution)] wm‡jevm: †f±i + ̧YMZ imvqb-1 (`ave ̈Zvi AvM ch©šÍ) + g ̈vwUa· I wbY©vqK + †Kvl I †Kv‡li MVb + evsjv-1 (AcwiwPZv, D”PviY, cvwifvwlK kã) + Bs‡iwR (Noun, Pronoun, determiners, Poem Summarizing) c~Y©gvb: 60 †b‡MwUf gvK©: 0.25 mgq: 45 wgwbU c`v_©weÁvb (Physics) 1. A B = 0 Ges A = 2i + 2j + 2k I B = 3i + mj + nk n‡j, m I n Gi gvb KZ? 4, 2 3, 3 3, 2 6, 6 DËi: 3, 3 e ̈vL ̈v: i 2 3 j 2 m k 2 n = 0 (2n – 2m)i + (6 – 2n)j + (2m – 6)k = 0 2n – 2m = 0 6 = 2n 2m – 6 = 0 m = n n = 3 m = 3 Trick : A B = 0 Abyiƒc mnM ̧‡jvi AbycvZ mgvb| 2 3 = 2 m = 2 n Zvn‡j, m I n Gi gvb 3, 3 n‡Z n‡e| 2. GKwU Mvwoi‡eM 5 ms–1 Ges e„wói †eM 4 ms–1 , evZv‡mi †eM 1ms–1 n‡j, e„wó †hw`‡K co‡Q e‡j g‡b nq Zvi mv‡_ Avbyf‚wgK w`‡K Drcbœ †KvY KZ? (Mvwoi MwZi w`‡K evZvm eB‡Z _v‡K|) tan–1 3 tan–1 4 cos–1 4 tan–1 1 DËi: tan–1 1 e ̈vL ̈v: Mvwoi MwZi w`‡K evZvm eB‡Z _vK‡j, tan = Q P – S = 4 5 – 1 = 1 3. `yBwU mggv‡bi †f±i GKwU we›`y‡Z wμqvkxj| G‡`i jwäi gvb †h‡Kv‡bv GKwU †f±‡ii gv‡bi mgvb n‡j, ga ̈eZ©x †KvY KZ? 90 120 45 0 DËi: 120 e ̈vL ̈v: P = Q = R n‡j, R = P 2 + Q2 + 2PQ cos P = P 2 + P2 + 2P2 cos P 2 = 2P2 + 2P2 cos –2P2 cos = P2 cos = P 2 – 2P2 = – 1 2 = cos 120 = 120 4. A = 3 i + 2 6 j – 4 k n‡j, A Gi mgvšÍivj GKK †f±i Kx n‡e? 3i – 2 6j – 4k 49 3i + 2 6j + 4k 7 3i + 2 6j – 4k 50 3i + 2 6j – 4k 49 DËi: 3i + 2 6j – 4k 49 e ̈vL ̈v: A Gi mgvšÍivj GKK †f±i, a = A |A| a = 3i + 2 6j – 4k 49 |A| = 3 2 +(2 6) 2 + (–4) 2 = 9 + 24 + 16 = 49 5. A = 0.866i + 3j †f±iwU z A‡ÿi mv‡_ KZ †KvY ˆZwi K‡i? 0 90 45 †Kv‡bv †KvYB ˆZwi K‡i bv DËi: 90 e ̈vL ̈v: = cos–1 0 (0.866) 2 + ( 3) 2 = 90 6. P = 5i + 4j – 2k n‡j, wb‡¤œi †Kvb gvbwU yz Z‡ji gvb bq? 2 5 20 16 5 None DËi: None e ̈vL ̈v: P = 5i + 4j – 2k yz Z‡j |P| = 4 2 + (–2) 2 = 20 = 2 5 yz Z‡ji GKK †f±iØq j I k 7. A = x 2 i + (–6yz)k + 3yj †ÿÎwU (3, 1, 0) we›`y‡Z KZUzKz diverge K‡i? 5 3 6 27 DËi: 3 e ̈vL ̈v: div(A) = .A = x x 2 + y 3y – z 6yz = 2x + 3 – 6y (3, 1, 0) we›`y‡Z = 6 + 3 – 6 = 3 8. `ywU GKK †f±i a I b Gi †hvMdj Aci GKwU GKK †f±i c n‡j, a . b = ?
2 1 2 3 2 – 3 2 – 1 2 DËi: – 1 2 e ̈vL ̈v: awi, `ywU GKK †f±i a I b Gi mgwó Aci GKK †f±i a + b = c (a ) + b 2 = (c) 2 [|a| ] = |b| = |c| (a ) + b . (a ) + b = c .c a 2 + 2a . b + b2 = c2 1 + 2a .b + 1 = 1 2a .b = –1 a .b = – 1 2 9. GKwU b`xi † ̄av‡Zi †eM 6ms–1 |8ms–1 †e‡Mi GKwU †bŠKv H b`x‡Z Pj‡Q| b`xi cÖ ̄’ 20 m n‡j b~ ̈bZg mg‡q b`x cvi n‡Z †bŠKv‡K KZ c_ cvwo w`‡Z n‡e? 50 m 30 m 40 m 25 m DËi: 25 m e ̈vL ̈v: †gvU AwZμvšÍ `~iZ¡ = jwä †eM cvivcv‡ii Rb ̈ b~ ̈bZg mgq = u 2 + v2 d v = 6 2 + 8 2 20 8 = 25 m 10. 135 10 N 10 2 N ej؇qi jwäi gvb KZ n‡e? 5 2 N 50 N 5 10 N 10 5 N DËi: 10 5 N e ̈vL ̈v: 10 2 N = 45 10 N = 180 – 135 = 45 jwä = (10 2) 2 + 102 + 2. 10 2. 10. cos45 = 200 + 100 + 2 10 2 10 1 2 = 500 = 10 5 N 11. wb‡Pi †Kvb `yBwU †f±i P = (3i ) + 3j – 3k Gi mv‡_ ci ̄úi j¤^? B = (2i ) + j + k , A = (9i ) + 10j + 4k A = (3i ) – 2j + k , B = (2i ) – j + k A = (2i ) + 2j – 3k , B = (i ) + j + k A = (i ) + j + k , B = (2i ) + j + k DËi: A = (3i ) – 2j + k , B = (2i ) – j + k e ̈vL ̈v: 2q option n‡Z, A .P = 9 – 6 – 3 = 0 B .P = 6 – 3 – 3 = 0 myZivs, (L) G A I B †f±iØq DfqB P Gi mv‡_ j¤^| 12. OA = i – 2j + 5k Ges OB = 3i – j + 9k n‡j, BA Gi gvb wb‡Pi †KvbwU? [†hLv‡b, O g~jwe›`y|] 29 9.89 21 40 DËi: 21 e ̈vL ̈v: O A B OA = i – 2j + 5k ; OB = 3i – j + 9k BA = OA – OB = – 2i – j – 4k |BA| = (–2) 2 + (–1) 2 + (–4) 2 = 4 + 1 + 16 = 21 13. A .B = 0 n‡j, †KvbwU mZ ̈? |A | + B = |A | – B A + B = 0 A = 4i + 9j + 2k , B = 4i + 2j + 3k †Kv‡bvwUB bq DËi: |A | + B = |A | – B e ̈vL ̈v: |A | + B = |A | – B A 2 + B2 + 2ABcos = A2 + B2 – 2ABcos 4ABcos = 0 = cos–1 (0) = 90 A . B = ABcos90 = 0 14. A = 3i – 4j , B = –3i + 4j ; Ges R Zv‡`i jwä n‡j, wb‡Pi †KvbwU mwVK? R GKwU GKgvwÎK †f±i R GKwU wØ-gvwÎK †f±i R GKwU wÎgvwÎK †f±i R GKwU bvj †f±i
3 DËi: R GKwU bvj †f±i e ̈vL ̈v: R = A + B = 3i – 4j – 3i + 4j = 0 15. GKwU e ̄`i Dci F = (2i ) ^ + 3j ^ – 4 k ^ N ej cÖ‡qv‡Mi d‡j †mwU (3, 2, –1) we›`y n‡Z (7, 7, 3) we›`y‡Z ̄’vbvšÍwiZ nq| G‡ÿ‡Î K...Z KvR KZ n‡e? 3 Ryj 4 Ryj 2 Ryj 7 Ryj DËi: 7 Ryj e ̈vL ̈v: W = F .r = (2i ) ^ + 3j ^ – 4k ^ .(4i ) ^ + 5j ^ + 4k ^ = 8 + 15 – 16 = 7 Ryj imvqb (Chemistry) 1. †Kvb cigvYy ev Avq‡bi g‡a ̈ B‡jKUab, †cÖvUb I wbDUab msL ̈v me ̧‡jvB wfbœ? 27 13Al 35 17Cl – 32 16S 2– 39 19K + DËi: 39 19K + e ̈vL ̈v: 39 19K + Avq‡bi, B‡jKUab msL ̈v = 19 – 1 = 18 †cÖvUb msL ̈v = 19 wbDUab msL ̈v = 39 – 19 = 20 2. wb‡¤œv3 wewμqvi k~b ̈ ̄’v‡b Kx n‡Z cv‡i? 27 13Al + 4 2He 30 15P + 1 0 n 0 –1 e 1 1H 0 0 DËi: 1 0 n e ̈vL ̈v: †cÖvUb msL ̈vi cv_©K ̈ = (13 + 2) – 15 = 0 fi msL ̈vi cv_©K ̈ = (27 + 4) – 30 = 1 ms‡KZ 1 0 n 27 13Al + 4 2He 30 15P + 1 0 n 3. c ̈v‡ðb wmwi‡Ri me©wb¤œ Zi1⁄2 msL ̈v KZ? 7 144 RH 144 7 RH 16 225 RH 1 9 RH DËi: 7 144 RH e ̈vL ̈v: c ̈v‡ðb wmwi‡Ri Rb ̈ n1 = 3 me©wb¤œ Zi1⁄2msL ̈vi Rb ̈ n2 = 3 1 = 4 – = RH 1 n1 2 – 1 n2 2 = RH 1 3 2 – 1 4 2 = 7 144 RH 4. wb‡Pi †KvbwU AbycÖfv m„wóKvix c`v_©? ZnS Na2S CaS K2S DËi: ZnS e ̈vL ̈v: iv`vi‡dvW© KYv we‡ÿcY cixÿvq ZnS e ̈envi K‡ib| KviY GwU AbycÖfv m„wóKvix c`v_© Ges Gi gva ̈‡g -KYvi w`K cwieZ©b eySv hvq| 5. cigvYyi wØZxq Kÿc‡_i GKwU B‡jKUa‡bi Rb ̈ †KŠwYK fi‡e‡Mi gvb wbY©‡qi mgxKiY †KvbwU? mvr = h 2 mvr = h mvr = 3h 2 mvr = 3h DËi: mvr = h e ̈vL ̈v: Avgiv Rvwb, †KŠwYK fi‡eM, L = mvr = nh 2 mvr = 2h 2 [n = 2] mvr = h 6. Cr cigvYyi me©ewnt ̄’ ͇̄ii B‡jKUa‡bi Rb ̈ †Kvqv›Uvg msL ̈vi †mU †KvbwU? n = 4, l = 0, m = 0, s = – 1 2 n = 3, l = 0, m = 0, s = – 1 2 n = 3, l = 2, m = – 2, s = – 1 2 n = 4, l = 2, m = 2, s = – 1 2 DËi: n = 4, l = 0, m = 0, s = – 1 2 e ̈vL ̈v: 24Cr 1s2 2s2 2p6 3s2 3p6 3d5 4s1 GLv‡b, Cr cigvYyi me©ewnt ̄’ ͇̄ii B‡jKUabwU PZz_© kw3 ͇̄ii s Dckw3 ͇̄i Aew ̄’Z| 4s1 Gi †ÿ‡Î: n = 4, l = 0, m = 0, s = – 1 2 7. 4_© kw3 ͇̄i †gvU AiweUvj msL ̈v KqwU? 4 9 16 32 DËi: 16 e ̈vL ̈v: 4_© kw3 ͇̄i †gvU AiweUvj msL ̈v = n 2 = 42 = 16wU 8. _v‡qvmvj‡dU (S2O 2– 3 ) Avq‡b me©‡gvU †hvRb B‡jKUab msL ̈v KZ? 28 30 32 34 DËi: 32