Content text BÀI 1_TÍNH ĐƠN ĐIỆU VÀ CỰC TRỊ HÀM SỐ_Phần 1_LỜI GIẢI_Toán 12_KNTT.docx
TÍNH ĐƠN ĐIỆU VÀ CỰC TRỊ HÀM SỐ BÀI 1: TÍNH ĐƠN ĐIỆU VÀ CỰC TRỊ CỦA HÀM SỐ 2 A. KIẾN THỨC CƠ BẢN CẦN NẮM 2 B. GIẢI BÀI TẬP SÁCH GIÁO KHOA 7 C. CÁC DẠNG TOÁN 15 Dạng 1: Xét định đơn điệu của hàm số cho bởi công thức 15 Dạng 2: Xét tính đơn điệu dựa vào bảng biến thiên, đồ thị 17 Dạng 3: Tìm tham số m để hàm số đơn điệu 19 Dạng 4: Ứng dụng tính đơn điệu để chứng minh bất đẳng thức, giải phương trình, bất phương trình, hệ bất phương trình 21 Dạng 5: Tìm cực trị hàm số cho bởi công thức 22 Dạng 6: Tìm cực trị dựa vào bảng biến thiên, đồ thị 24 Dạng 7: Tìm m để hàm số đạt cực trị tại một điểm x 0 cho trước 27 Dạng 8: Toán thực tế 29 D. BÀI TÂP TRẮC NGHIỆM 4 PHƯƠNG ÁN 32 PHẦN 1. TÍNH ĐƠN ĐIỆU CỦA HÀM SỐ 32 PHẦN 2. CỰC TRỊ CỦA HÀM SỐ 85 E. CÂU TRẮC NGHIỆM ĐÚNG SAI 131 F. TRẢ LỜI NGẮN 139
BÀI 1: TÍNH ĐƠN ĐIỆU VÀ CỰC TRỊ CỦA HÀM SỐ A. KIẾN THỨC CƠ BẢN CẦN NẮM 1. TÍNH ĐƠN ĐIỆU CỦA HÀM SỐ a) Khái niệm tính đơn điệu của hàm số Giả sử K là một khoảng, một đoạn hoặc một nửa khoảng và ()yfx là hàm số xác định trên K . - Hàm số ()yfx được gọi là đồng biến trên K nếu 121212,,xxKxxfxfx . - Hàm số ()yfx được gọi là nghịch biến trên K nếu 121212,,xxKxxfxfx . Chú ý: - Nếu hàm số đồng biến trên K thì đồ thị của hàm số đi lên từ trái sang phải (H.1.3a). Nếu hàm số nghịch biến trên K thì đồ thị của hàm số đi xuống từ trái sang phải (H.1.3b). Hàm số đồng biến hay nghịch biến trên K còn được gọi chung là đơn điệu trên K . Việc tim các khoảng đồng biến, nghịch biến của hàm số còn được gọi là tìm các khoảng đơn điệu (hay xét tính đơn điệu) của hàm số. - Khi xét tính đơn điệu của hàm số mà không chỉ rõ tập K thì ta hiểu là xét trên tập xác định của hàm số đó. Ví dụ 1. Hình 1.4 là đồ thị của hàm số ()||yfxx . Hãy tìm các khoảng đồng biến, khoảng nghịch biến của hàm số. Lời giải
Tập xác định của hàm số là ℝ . Từ đồ thị suy ra: Hàm số đồng biến trên khoảng (0;) , nghịch biến trên khoảng (;0) . ĐỊNH LÝ Cho hàm số ()yfx có đạo hàm trên khoảng K . a) Nếu ()0fx với mọi xK thì hàm số ()fx đồng biến trên khoảng K . b) Nếu ()0fx với mọi xK thì hàm số ()fx nghịch biến trên khoảng K . Chú ý - Định lí trên vẫn đúng trong trường hợp ()fx bằng 0 tại một số hữu hạn điểm trong khoảng K . - Người ta chứng minh được rằng, nếu ()0fx với mọi xK thì hàm số ()fx không đổi trên khoảng K . Ví dụ 2. Tìm các khoảng đồng biến, khoảng nghịch biến của hàm số 242yxx . Lời giải Tập xác định của hàm số là ℝ . Ta có: 24;0yxy với (2;)x ; 0y với (;2)x . Do đó, hàm số đồng biến trên khoảng (2;) , nghịch biến trên khoảng (;2) . b) Sử dụng bảng biến thiên xét tính đ̛ơn điệu của hàm số Các bước để xét tính đơn điệu của hàm số ()yfx : 1. Tìm tập xác định của hàm số. 2. Tính đạo hàm ()fx . Tìm các điểm (1,2,)ixi mà tại đó đạo hàm bằng 0 hoặc không tồn tại. 3. Sắp xếp các điểm ix theo thứ tự tăng dần và lập bảng biến thiên của hàm số. 4. Nêu kết luận về khoảng đồng biến, nghịch biến của hàm số. Ví dụ 3. Tìm các khoảng đơn đị̣̂u của hàm số 2 25 1 xx y x . Lời giải Tập xác định của hàm số là \{1}ℝ .
Ta có: 22 22 (22)(1)2523 ;01 (1)(1) xxxxxx yyx xx hoặc 3x . Lập bảng biến thiên của hàm số: Từ bảng biến thiên, ta có: Hàm số đồng biến trên các khoảng (;1) và (3;) . Hàm số nghịch biến trên các khoảng (1;1) và (1;3) . Ví dụ 4. Xét chiều biến thiên của hàm số 2 1 x y x . Lời giải Tập xác định của hàm số là \{1}ℝ . Ta có: 22 (1)(2)3 0 (1)(1) xx y xx , với mọi 1x . Lập bảng biến thiên của hàm số: Từ bảng biến thiên, ta có: Hàm số đồng biến trên các khoảng (;1) và (1;) . 2. CỰC TRỊ CỦA HÀM SỐ a) Khái niệm cực trị của hàm số Tổng quát, ta có định nghĩa sau: