Content text Vector Varsity Daily-2 (Home Practice)-Solution.pdf
1 Daily-02 [Home Practice (Solve Sheet)] wm‡jevm: †f±i c~Y©gvb: 30 †b‡MwUf gvK©: 0.25 mgq: 20 wgwbU 1. k . (i ) + j = ? 2 0 4 1 DËi: 0 e ̈vL ̈v: k . i = |k| |i| cos90 = 0 Ges k . j = |k| |j| cos90 = 0 k .i + k .j = 0 + 0 = 0 †h‡nZz i , j I k h_vμ‡g x, y I z Aÿ eivei GKK †f±i Ges x, y I z Aÿ ci ̄ú‡ii mv‡_ j¤^fv‡e Aew ̄’Z| ZvB k I i Gi †ÿ‡Î = 90 Ges k I j Gi †ÿ‡Î = 90| 2. wZbwU †f±i, [p, q, r] x-A‡ÿi abvZ¥K w`‡Ki mv‡_ 60, 120, 90 †KvY Drcbœ K‡i Ges p + q + r = n n‡j, n Gi w`K KZ? (p ) q r Gi gvb 50 [Three vectors, [p, q, r] x-make angles of 60°, 120°, and 90° with the positive x-axis, respectively. If p + q + r = n what is the direction of n ? (Given that, (p ) q r = 50 ] 130 120 – 50 None of these DËi: None of these e ̈vL ̈v: 120 r 60 q p rcos = Pcos60 + qcos120 + r cos90 = 50 1 2 – 50 1 2 + 0 = 25 – 25 + 0 = 0 rsin = Psin60 + qsin120 + rsin90 = 50 3 2 + 50 3 2 + 50 = 50( 3 + 1) tan = ( 3 + 1) (50) 0 = tan–1 50 ( 3 + 1) 0 hv Awb‡Y©q| 3. A = 2i – 3j Ges B = – i + 4j n‡j, |A | – B = ? A = 2i – 3j and B = – i + 4j then |A | – B = ? 50 22 58 14 DËi: 58 e ̈vL ̈v: A – B = (2i ) – 3j – (–i ) + 4j = i (2 + 1) – j (3 + 4) = 3i – 7j |A | – B = (3) 2 + (–7) 2 = 58 (Ans.) 4. `ywU †f±‡ii †hvMdj I we‡qvMd‡ji gvb ci ̄úi mgvb n‡j, †f±iØq ci ̄ú‡ii Kx n‡e? [If the magnitude of the sum and difference of two vectors are equal, what is the relationship between the vectors? ] mgvšÍivj (Parallel) j¤^ (Perpendicular) wecixZ (Antiparallel) †Kv‡bvwU bq (None of the above) DËi: j¤^ (Perpendicular) e ̈vL ̈v: awi, `ywU †f±i A , B Gi ga ̈eZ©x †KvY |A | + B = |A | – B A B A 2 + B2 + 2AB cos = A2 + B2 – 2ABcos [eM© K‡i|] 2AB cos + 2ABcos = 0 4ABcos = 0 cos = 0 4AB cos = 0 cos = cos90 = 90 = 2 (j¤^) 5. ci ̄úi 2 †Kv‡Y wμqviZ P I Q e‡ji gvb mgvb n‡j, Zv‡`i jwä Q e‡ji mv‡_ KZ †KvY Drcbœ Ki‡e? [If the angle between two vectors P and Q is 2 , and their magnitudes are equal, what is the angle between P and the resultant of P and Q?] 2 4 2 3 4 DËi: 4
2 e ̈vL ̈v: tan = Psin 2 Q + Pcos 2 = sin 2 1 + cos 2 = 2sin 4 cos 4 2cos2 4 tan = tan 4 = 4 6. GK e ̈w3 m~h©v‡ ̄Íi w`‡K 5 m hvIqvi ci `wÿY w`‡K 12 m †Mj| Zvi `~iZ¡ I mi‡Yi AbycvZ KZ? [A person walks 5 m west and then 12 m south. What is the ratio of his distance and displacement?] 13 17 1 17 13 2 DËi: 17 13 e ̈vL ̈v: 5 m 12 m c: `: D: c~: miY, R = A 2 + B2 [when, = 90] = 5 2 + 122 [A = 5, B = 12-a‡i] = 25 + 144 = 169 = 13 m `~iZ¡ = 12 + 5 = 17 m AbycvZ = 17 13 7. wb‡Pi †Kvb †f±‡ii cv`we›`y I kxl©we›`y GKB? [Which vector has its tail and head at the same point?] mg‡iL †f±i (Scalar vector) GKK †f±i (Zero vector) bvj †f±i (Null vector) mgZjxq †f±i (Unit vector) DËi: bvj †f±i (Null vector) 8. (A ) . B 2 |A | B 2 = ? tan2 A 2B 2 cot cot2 DËi: cot2 e ̈vL ̈v: (A ) . B 2 |A | B 2 A 2B 2 cos2 A 2B 2 sin2 = cot2 9. wP‡Î V1 Gi mv‡c‡ÿ V2 Gi †e‡Mi gvb KZ? [Given the vectors V1 and V2 in the diagram, what is the magnitude of V2 relative to V1?] V2 = 4ms–1 30 V1 = 3ms–1 5 – 2 3 10 + 12 3 73 37 DËi: 37 e ̈vL ̈v: V1 = 3j V2 = 4cos30i + 4sin30j V21 = V2 – V1 = 4 3 2 i + 4 1 2 j – 3j V21 = 2 3i + 5j |V | 21 = (2 3) 2 + (5) 2 = 12 + 25 = 37 10. b I c `ywU †f±i GKB mgZ‡j wμqvkxj Ges b c Gi mv‡_ a Aci GKwU †f±i ‘’ †Kv‡Y wμqvkxj| GLb, a (b ) c Gi †f±i †Kvb Z‡j Ae ̄’vb Ki‡e? [Given three vectors b , c that lie in the same plane, and vector a makes an angle with the plane containing b and c what is the direction of the vector a (b ) c ] a †h Z‡j Av‡Q †mB Z‡j (a lies in the same plane as b and c ) a c †h Z‡j Av‡Q †mB Z‡j (a c lies in the same plane as b and c ) b I c †h Z‡j Av‡Q †mB Z‡j (b and c lies in the same plane as b and c ) †KvbwUB bq (None of these) DËi: b I c †h Z‡j Av‡Q †mB Z‡j (b and c lies in the same plane as b and c ) e ̈vL ̈v: b c Gi gvb b I c Gi mv‡_ j¤^fv‡e Ae ̄’vb K‡i| GLb, b c Gi mv‡_ †Kv‡Y a Ae ̄’vb Ki‡j, G‡`i μm †cÖvWv± Gi gvb Avevi b I c Gi Z‡j †diZ Avm‡e!
3 11. a = 3 2 b ; c = 1 2 a n‡j, a . c Gi gvb KZ? [If a = 3 2 b ; c = 1 2 a , then what is the value of a . c ?] 3 4 3 4 b 2 9 4 b 2 9 8 b 2 DËi: 9 8 b 2 e ̈vL ̈v: a . c = 3 2 b . 1 2 a = 3 2 b . 1 2 3 2 b = 3 2 b . 3 4 b = 3 2 3 4 b .b = 9 8 b 2 12. hw` GKwU †bŠKv d cÖ‡ ̄’i †Kv‡bv b`x †mvRvmywR cvi n‡Z Pvq Z‡e, wb‡Pi †KvbwU mwVK? (u = † ̄av‡Zi †eM, v = †bŠKvi †eM) [If a boat needs to cross a river of width d directly, what should be the angle at which it should be steered with respect to the current? (u = speed of the current, v = speed of the boat)] t = d v cos – u v t = d sin cos–1 u v t = d v sin sin–1 v 2 – u 2 v t = d V DËi: t = d v sin sin–1 v 2 – u 2 v e ̈vL ̈v: = cos–1 – u v u d w v t = d v sin cos–1 – u v v –u v 2 – (–u) 2 = v 2 – u 2 cos–1 –u v = sin–1 v 2 – u 2 v = d v sin sin–1 v 2 – u 2 v 13. `ywU e‡ji jwäi gvb 3 N| ej `ywUi g‡a ̈ †QvU ejwUi gvb 2N n‡j, hvi mv‡_ jwä 90 †KvY Drcbœ K‡i| Zvn‡j, eo ejwUi gvb KZ? [Two forces of magnitude √3 N and 2N act at a point. If the resultant force makes an angle of 90° with the smaller force, what is the magnitude of the larger force?] 2– 3 2 2 + 3 2 2 2 3 2 None of these DËi: None of these e ̈vL ̈v: 3 N 2N P tan90 = Psin 2 + Pcos 1 0 = Psin 2 + Pcos Pcos = – 2 R 2 = P2 + Q2 + 2PQ cos ( 3) 2 = P2 + 22 + 2 (– 2) 2 3 = P2 – 4 P 2 = 7 P = 7 14. †KvbwU mwVK? [Which of the following is correct?] a . b = a (a ) Gi w`‡K b Gi j¤^ Awf‡ÿc (a . b = a ) (projection of b onto a ) a . b = b (a ) Gi w`‡K b Gi j¤^ Awf‡ÿc (a . b = b (projection of b onto a )) a . b = ab cos sin a . b = a b hLb = 180 (a . b = a b then = 180 DËi: a . b = a (a ) Gi w`‡K b Gi j¤^ Awf‡ÿc (a . b = a ) (projection of b onto a ) e ̈vL ̈v: a . b = a(bcos) a (a ) Gi w`‡K b Gi j¤^ Awf‡ÿc 15. V = ax2 i + bxy2 j + cyz3 k , V Gi Kvj© k~b ̈ n‡j, wb‡Pi †KvbwU mwVK? [Given the vector field, V = ax2 i + bxy2 j + cyz3 k , if the curl of V is zero, which of the following is correct?] AN~Y©bkxj, AmsiÿYkxj (Irrotational, non-conservative) N~Y©bkxj, AmsiÿYkxj (Rotational, non-conservative) N~Y©bkxj, msiÿYkxj (Rotational, conservative) AN~Y©bkxj, msiÿYkxj (Irrotational, conservative) DËi: AN~Y©bkxj, msiÿYkxj (Irrotational, conservative)
4 e ̈vL ̈v: Curl V = V = 0 n‡j, V AN~Y©bkxj, msiÿYkxj Curl V = V 0 n‡j, V N~Y©bkxj, AmsiÿYkxj Curl V = V > 0, V N~Y©bkxj (Counter clock wise) Curl V = V < 0, V N~Y©bkxj (clock wise) 16. `ywU UavK ci ̄úi †_‡K 60 †Kv‡Y h_vμ‡g 50 kmh–1 Ges 40 kmh–1 †e‡M MwZkxj Zv‡`i jwä †eM KZ? [Two trucks are moving at 50 kmh–1 and 40 kmh–1 at an angle of 60° to each other. What is the magnitude of their resultant velocity?] 10 61 kmh–1 15 50 kmh–1 20 3 kmh–1 30 3 kmh–1 DËi: 10 61 kmh–1 e ̈vL ̈v: jwä = (A) 2 + (B) 2 + 2AB cos60 = 502 + 402 + 2 50 40 cos 60 = 6100 = 61 100 = 10 61 kmh–1 GLv‡b, A = 50 kmh–1 B = 40 kmh–1 = 60 R = ? 17. V = axi – 4yj + 8x3 y 2 k , †f±i †ÿÎwU mwjbqWvj n‡j, a Gi gvb KZ? [Given the vector field V = axi – 4yj + 8x3 y 2 k , if the vector field is solenoidal, what is the value of a?] 3 2 5 4 DËi: 4 e ̈vL ̈v: Avgiv Rvwb, GKwU †f±i †ÿÎ ZLbB mwjbqWvj n‡e hw`, div V = 0 nq| b ̈vejv = i x + j y + k z V = axi – 4yj + 8x3 y 2 k div V = . V = 0 i x + j y + k z . (axi ) – 4yj + 8x3 y 2 k = 0 i .i x ax – j .j y 4y + k .k z 8x3 y 2 = 0 a – 4 + 0 = 0 [i .i = j .j = k .k = 1] a – 4 = 0 x x n = nxn–1 a = 4 18. P = (x + 3y)i + (3y – 5z)j + (9x + 5z)k n‡j, †f±iwUi divergence Kx n‡e? [Given the vector field P = (x + 3y)i + (3y – 5z)j + (9x + 5z)k , what is the divergence of P?] –9 8 –8 9 DËi: 9 e ̈vL ̈v: P = (x + 3y)i + (3y – 5z)j + (9x + 5z)k div P = .P = i x + j y + k z {(x + 3y)i } + (3y – 5z)j + (9x + 5z) k = 1 + 3 + 5 = 9 19. a – b (b ) .a b 2 †f±iwU, b †f±‡ii mv‡_ KZ †KvY Drcbœ K‡i? [a – b (b ) .a b 2 what is the angle between a and the projection of b onto a ?] 0 90 Error 180 DËi: 90 e ̈vL ̈v: †f±i `yBwUi WU ̧Ydj = b . a – b (b ) .a b 2 = b .a – (b ) . b (b ) .a b 2 = b .a – b 2 (b ) .a b 2 = b .a – b .a = 0 A_©vr †f±iØq ci ̄úi j¤^| 20. A B = 0 Ges A = 2i + 2j + 2k n‡j, B = 3i + mj + nk n‡j, m I n Gi gvb KZ? [Given, A B = 0 and, A = 2i + 2j + 2k , B = 3i + mj + nk . what are the values of m and n?] 4, 2 3, 3 3, 2 6, 6 DËi: 3, 3 e ̈vL ̈v: i 2 3 j 2 m k 2 n = 0 (2n – 2m)i + (6 – 2n)j + (2m – 6)k = 0 2n – 2m = 0 6 = 2n 2m – 6 = 0 m = n n = 3 m = 3 Trick : A B = 0 Abyiƒc mnM ̧‡jvi AbycvZ mgvb| 2 3 = 2 m = 2 n Zvn‡j, m I n Gi gvb 3, 3 n‡Z n‡e|