Content text TOAN-11_C7_B3.2_DAO-HAM-CAP-HAI_TN_HDG.pdf
CHUYÊN ĐỀ VII – TOÁN – 11 – ĐẠO HÀM Page 1 Sưu tầm và biên soạn BÀI 3: ĐẠO HÀM CẤP HAI Câu 1: Cho 3 f x x . Tính f 1 . A. f 1 3. B. f 1 2 . C. f 1 6 . D. f 1 1. Lời giải 3 2 f x x f x 3x f x 3.2x 6x f 1 6.1 6 Câu 2: Cho hàm số 3 f x x 2x , giá trị của f 1 bằng A. 6 . B. 8 . C. 3 . D. 2 . Lời giải 2 f x 3x 2 , f x 6x f 1 6 . Câu 3: Cho hàm số 5 f x 3x 7 . Tính f 2 . A. f 2 0 . B. f 2 20 . C. f 2 180 . D. f 2 30 . Lời giải 5 f x 3x 7 4 f x 15 3x 7 . 3 f x 180 3x 4 . Vậy f 2 180 . Câu 4: Cho hàm số 1 2 1 f x x . Tính f ¢¢1 . A. 8 27 B. 2 9 . C. 8 27 D. 4 27 . Lời giải Tập xác định 1 \ 2 D . CHƯƠN GVII ĐẠO HÀM HỆ THỐNG BÀI TẬP TRẮC NGHIỆM. III == =I
CHUYÊN ĐỀ VII – TOÁN – 11 – ĐẠO HÀM Page 2 Sưu tầm và biên soạn 2 2 2 1 f x x ¢ , 3 8 2 1 f x x . Khi đó 8 1 27 f ¢¢ . Câu 5: Cho hàm số 2 3 x y x . Tính y . A. 3 5 3 y x . B. 2 10 3 y x . C. 3 10 3 y x . D. 3 5 3 y x . Lời giải TXĐ D \3. Có 2 4 3 5 2 3 10 5. 3 3 3 x y y x x x . Câu 6: Đạo hàm cấp hai của hàm số 6 3 y x 4x 2x 2022 với x là A. 4 y 30x 24x 2 . B. 4 y 30x 24x . C. 5 2 y 6x 12x 2 .D. 5 2 y 6x 12x . Lời giải Ta có 5 2 y 6x 12x 2 Suy ra 4 y 30x 24x . Câu 7: Cho hàm số y x.cosx . Tìm hệ thức đúng trong các hệ thức sau: A. y y sin x 2x cos x . B. y y 2sin x . C. y y sin x x cos x . D. y y 2sin x . Lời giải Ta có y cosx x sin x y 2sin x x cos x . Khi đó y y 2sin x x cos x x cos x 2sin x . Câu 8: Cho hàm số y sin 2x . Mệnh đề nào sau đây đúng? A. 2 2 ' y y 4 . B. ' y y .tan 2x . C. '' 4y y 0. D. '' 4y y 0 . Lời giải Ta có ' '' y 2 cos2x y 4sin 2x '' 4y y 4sin 2x 4sin 2x 0 Câu 9: Cho hàm số 3 y sin x . Khẳng định nào sau đây đúng? A. y9y sin x 0. B. y9y 6sin x 0. C. y9y6cosx0. D. y9y 6sin x 0. Lời giải Ta có 3 2 y sin x y 3sin x.cos x và 2 3 y 6sin x.cos x 3sin x.
CHUYÊN ĐỀ VII – TOÁN – 11 – ĐẠO HÀM Page 3 Sưu tầm và biên soạn Khi đó 2 3 3 2 2 y 9y 6sin x.cos x 3sin x 9sin x 6sin x sin x cos x 6sin x. Câu 10: Cho hàm số 5 4 y x 3x x 1 với x . Đạo hàm y của hàm số là A. 3 2 y 5x 12x 1. B. 4 3 y 5x 12x . C. 2 3 y 20x 36x . D. 3 2 y 20x 36x . Lời giải Ta có 5 4 y x 3x x 1 4 3 3 2 y 5x 12x 1 y 20x 36x . Câu 11: Tính đạo hàm cấp hai của hàm số y 3cos x tại điểm 0 2 x . A. 3 2 y . B. 5 2 y . C. 0 2 y . D. 3 2 y . Lời giải y 3cos x y 3sin x; y 3cos x . 0 2 y . Câu 12: Cho 2 y 2x x , tính giá trị biểu thức 3 A y .y . A. 1. B. 0 . C. 1. D. Đáp án khác. Lời giải Ta có: 3 2 2 1 1 ' , '' 2 2 x y y x x x x Do đó: 3 A y .y '' 1. Câu 13: Đạo hàm cấp hai của hàm số 3 1 2 x y x là A. 2 10 2 y x B. 4 5 2 y x C. 3 5 2 y x D. 3 10 2 y x Lời giải Ta có 2 3 5 5 10 3 ; 2 2 2 y y y x x x Câu 14: Đạo hàm cấp hai của hàm số 2 y cos x là A. y 2cos 2x . B. y 2sin 2x . C. y 2cos 2x . D. y 2sin 2x . Lời giải y ' 2cos x.sin x sin 2x y 2cos 2x . Câu 15: Cho hàm số 2 y sin x . Khi đó y ''(x) bằng
CHUYÊN ĐỀ VII – TOÁN – 11 – ĐẠO HÀM Page 4 Sưu tầm và biên soạn A. 1 '' 2 2 y cos x . B. P 2sin 2x . C. y '' 2cos 2x . D. y '' 2cos x . Lời giải 2 y sin x y ' 2sin x.cosx sin 2 x y '' 2cos 2x Câu 16: Cho hàm số 1 y . x Đạo hàm cấp hai của hàm số là A. 3 2 y . x B. 2 2 y . x C. 3 2 y . x D. 2 2 y . x Lời giải Ta có: 2 1 y ' x nên ' 2 4 4 3 2 2 . x x y x x x Câu 17: Cho hàm số 2 y 1 3x x . Khẳng định nào dưới đây đúng? A. 2 y y.y 1. B. 2 y 2y.y 1. C. 2 y.y y 1. D. 2 y y.y 1. Lời giải 2 y 1 3x x 2 2 y 1 3x x 2y.y 3 2x 2 2. y 2y.y 2 2 y y.y 1 Câu 18: Cho hàm số y sin 2x . Hãy âu đúng. A. 2 2 y y 4 . B. 4y y 0 . C. 4y y 0 . D. y y 'tan 2x . Lời giải Tập xác định D . Ta có y 2cos 2x và y 4sin 2x . 4y y 4sin 2x 4sin 2x 0 . Câu 19: Phương trình chuyển động của một chất điểm được biểu thị bởi công thức 2 3 S t 4 2t 4t 2t , trong đó t 0 và t tính bằng giây s, S t tính bằng mét m . Tìm gia tốc a của chất điểm tại thời điểm t 5s . A. 2 a 68 m / s . B. 2 a 115 m / s . C. 2 a 100 m / s . D. 2 a 225 m / s . Lời giải Theo ứng dụng đạo hàm của hàm số có: 2 v t S t 2 8t 6t và at vt 8 12t 2 a 5 68 m / s .